早教吧作业答案频道 -->数学-->
(2014•牡丹江)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么
题目详情

(1)求证:CE=AD;
(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.
▼优质解答
答案和解析
(1)证明:∵DE⊥BC,
∴∠DFB=90°,
∵∠ACB=90°,
∴∠ACB=∠DFB,
∴AC∥DE,
∵MN∥AB,即CE∥AD,
∴四边形ADEC是平行四边形,
∴CE=AD;
(2)四边形BECD是菱形,
理由是:∵D为AB中点,
∴AD=BD,
∵CE=AD,
∴BD=CE,
∵BD∥CE,
∴四边形BECD是平行四边形,
∵∠ACB=90°,D为AB中点,
∴CD=BD,
∴四边形BECD是菱形;
(3)当∠A=45°时,四边形BECD是正方形,理由是:
∵∠ACB=90°,∠A=45°,
∴∠ABC=∠A=45°,
∴AC=BC,
∵D为BA中点,
∴CD⊥AB,
∴∠CDB=90°,
∵四边形BECD是菱形,
∴四边形BECD是正方形,
即当∠A=45°时,四边形BECD是正方形.
∴∠DFB=90°,
∵∠ACB=90°,
∴∠ACB=∠DFB,
∴AC∥DE,
∵MN∥AB,即CE∥AD,
∴四边形ADEC是平行四边形,
∴CE=AD;
(2)四边形BECD是菱形,
理由是:∵D为AB中点,
∴AD=BD,
∵CE=AD,
∴BD=CE,
∵BD∥CE,
∴四边形BECD是平行四边形,
∵∠ACB=90°,D为AB中点,
∴CD=BD,
∴四边形BECD是菱形;
(3)当∠A=45°时,四边形BECD是正方形,理由是:
∵∠ACB=90°,∠A=45°,
∴∠ABC=∠A=45°,
∴AC=BC,
∵D为BA中点,
∴CD⊥AB,
∴∠CDB=90°,
∵四边形BECD是菱形,
∴四边形BECD是正方形,
即当∠A=45°时,四边形BECD是正方形.
看了 (2014•牡丹江)如图,在...的网友还看了以下:
如图,在平行四边形ABCD中,E为BC边上的一点,连接AE.BD且AE=AB(1)求证∠ABE=∠ 2020-05-13 …
已知:如图,在平行四边形ABCD中,点E是BC中点,连接AE并延长交DC的延长线于点F,连接BF. 2020-05-16 …
如图在四边形ABCD中 点E F分别是AB BC边中点,DE DF分别交AC于G H且 AG=GH 2020-05-16 …
如图,将平行四边形ABCD的DC延长到点E使CE=DC连接AE交BC与点F(1)求证△ABF≌△E 2020-05-16 …
如图,已知平行四边形ABCD中,过点B的直线分别交DA、DC、AC的延长线与E、F、O,求证:OB 2020-05-16 …
D是等边三角形ABC内任意一点,连接BD、CD,做等边三角形BDE和等边三角形CDF,连接求证四边 2020-06-06 …
圆O与圆O'相交与A,B两点,过点B作CD垂直于AB,分别交圆O与圆O'于点C.D.(1)求证:A 2020-07-31 …
如图所示,已知圆O外有一点P,作圆O的切线PM,M为切点,过PM的中点N,作割线NAB,交圆于A、B 2020-11-04 …
点O是以四边形abcd的外接园和内切园的园心,内切园与四边形各边分别相切于点e,f,g,h.求证:四 2020-12-25 …
如图在四边形ABCD中,AD平行于BC,AD不等于BC,角B等于90度,AG平行于CD交BC于点G, 2021-01-11 …