早教吧作业答案频道 -->数学-->
如图1所示,在边长为1的正方形ABCD中,P是BC边上一动点,AP的延长线与∠ABC的外角平分线交于E,∠EAF=45°,且AF交∠ADC的外角平分线交于F,把△ADF绕A旋转至△ABQ.(Ⅰ)如图1所示,当BE=DF时
题目详情
如图1所示,在边长为1的正方形ABCD中,P是BC边上一动点,AP的延长线与∠ABC的外角平分线交于E,∠EAF=45°,且AF交∠ADC的外角平分线交于F,把△ADF绕A旋转至△ABQ.
(Ⅰ)如图1所示,当BE=DF时,求BQ的长;
(Ⅱ)如图2所示.
(1)请探究线段BE,DF,EF之间的数量关系,并证明.
(2)当点P在BC边上运动时,记BP=x(0<x<1),S△BEQ=y,探究y是否随着x的变化而变化,若不变化,求出y的值,若变化,求出y与x的函数关系式.

(Ⅰ)如图1所示,当BE=DF时,求BQ的长;
(Ⅱ)如图2所示.
(1)请探究线段BE,DF,EF之间的数量关系,并证明.
(2)当点P在BC边上运动时,记BP=x(0<x<1),S△BEQ=y,探究y是否随着x的变化而变化,若不变化,求出y的值,若变化,求出y与x的函数关系式.

▼优质解答
答案和解析
(Ⅰ)∵四边形ABCD是正方形,
∴AB=AD=1,∠ABC=∠ADC=∠BAD=90°.
∵BE、DF分别是正方形ABCD的外角平分线,
∴∠EBC=∠CDF=45°.
∴∠ABE=∠ADF=135°.
在△ABE和△ADF中,由于
,
∴△ADF≌△ABE.
∴∠BAE=∠DAF
∵∠EAF=45°,
∴∠DAF=
(90°-45°)=22.5°.
∵∠ADF=135°,
∴∠AFD=22.5°,
∴∠DAF=∠DFA,
∴AB=DF=1.
∵△ADF绕A旋转至△ABQ,
∴△ADF≌△ABQ,
∴BQ=DF=1.
(Ⅱ)(1)BE2+DF2=EF2.
证明:∵△ADF≌△ABQ,
∴BQ=DF,AQ=AF,∠QAB=∠DAF=22.5°,∠ADF=∠ABQ=135°,
又∵∠ABE=135°,
∴∠QBE=360°-∠ABQ-∠ABE=90°,
在RT△BQE中,BE2+BQ2=QE2.即BE2+DF2=QE2.
∵∠QAB=∠BAE=∠DAF=22.5°,
∴∠QAE=45°
∴∠QAE=∠EAF.
在△QAE和△FAE中,由于
,
∴△QAE≌△FAE,
∴QE=EF.
∴BE2+DF2=EF2.
(2)当点P在BC边上运动时,
∵∠ADF=∠ABE=135°,
∴∠BAE+∠BEA=45°,
又∵∠DAF+∠BAE=45°,
∴∠DAF=∠AEB.
∴△ABE∽△FDA.
由于△ADF≌△ABQ,
∴△ABE∽△QBA.
∴
=
即BQ×BE=1.
∵△BQE为直角三角形,
∴y=S△QBE=
×BQ×BE=
.
所以y不随x(0<x<1)的变化而变化,恒等于
.
∴AB=AD=1,∠ABC=∠ADC=∠BAD=90°.
∵BE、DF分别是正方形ABCD的外角平分线,
∴∠EBC=∠CDF=45°.
∴∠ABE=∠ADF=135°.
在△ABE和△ADF中,由于
|
∴△ADF≌△ABE.
∴∠BAE=∠DAF
∵∠EAF=45°,
∴∠DAF=
1 |
2 |
∵∠ADF=135°,
∴∠AFD=22.5°,
∴∠DAF=∠DFA,
∴AB=DF=1.

∵△ADF绕A旋转至△ABQ,
∴△ADF≌△ABQ,
∴BQ=DF=1.
(Ⅱ)(1)BE2+DF2=EF2.
证明:∵△ADF≌△ABQ,
∴BQ=DF,AQ=AF,∠QAB=∠DAF=22.5°,∠ADF=∠ABQ=135°,
又∵∠ABE=135°,
∴∠QBE=360°-∠ABQ-∠ABE=90°,
在RT△BQE中,BE2+BQ2=QE2.即BE2+DF2=QE2.
∵∠QAB=∠BAE=∠DAF=22.5°,
∴∠QAE=45°
∴∠QAE=∠EAF.

在△QAE和△FAE中,由于
|
∴△QAE≌△FAE,
∴QE=EF.
∴BE2+DF2=EF2.
(2)当点P在BC边上运动时,
∵∠ADF=∠ABE=135°,
∴∠BAE+∠BEA=45°,
又∵∠DAF+∠BAE=45°,
∴∠DAF=∠AEB.
∴△ABE∽△FDA.
由于△ADF≌△ABQ,

∴△ABE∽△QBA.
∴
BQ |
AB |
AB |
BE |
即BQ×BE=1.
∵△BQE为直角三角形,
∴y=S△QBE=
1 |
2 |
1 |
2 |
所以y不随x(0<x<1)的变化而变化,恒等于
1 |
2 |
看了 如图1所示,在边长为1的正方...的网友还看了以下:
如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB,CD的延长线分别交于E,F。( 2020-04-09 …
已知f(x)=2x-2-x,a=(79)12,b=(97)12,c=log279,则f(a),f( 2020-05-13 …
f(x)+f(y)=2f[(x+y)/2]f[(x-y)/2],f(0)不等于,且存在非零常数c, 2020-05-14 …
下列说法,正确的有:A 延长直线AB B 延长线段BC C 延长射线OA D 画直线 在射线AB上 2020-05-15 …
如图1所示,在正方形ABCD和正方形CGEF中,点B、C、G在同一条直线上,M是线段AE的中点,D 2020-06-22 …
在锐角三角形ABC中,AB≠AC,AD是高,H是AD上一点,连BH并延长交AC于E,连接CH并延长 2020-07-30 …
如图,过圆O外一点A分别作圆O的两条切线AB、AC,延长BA于点D,使DA=AB,直线CD交圆O于 2020-08-01 …
f(x)在[0,1]上二阶可微且f'(0)=f'(1)=0,则存在c,使得f''(c)≥4|f(1) 2020-11-03 …
如图,在等腰△ABP中,PA=PB,点D、E分别为AP、AB边上的点,点C、F都在BP边长,且DC∥ 2020-11-04 …
1)设f(x)在[a,b]上可微,且f(a)=f(b)=0,证明:在(a,b)内存在一点ξ,使f'( 2020-12-28 …