早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•江苏一模)已知数列{an}的首项a1=a,其前n和为Sn,且满足Sn+Sn-1=3n2(n≥2).若对任意的n∈N*,an<an+1恒成立,则a的取值范围是(94,154)(94,154).

题目详情
(2014•江苏一模)已知数列{an}的首项a1=a,其前n和为Sn,且满足Sn+Sn-1=3n2(n≥2).若对任意的n∈N*,an<an+1恒成立,则a的取值范围是
(
9
4
15
4
)
(
9
4
15
4
)
▼优质解答
答案和解析
由条件Sn+Sn−1=3n2(n≥2)得Sn+1+Sn=3(n+1)2,
两式相减得an+1+an=6n+3,
故an+2+an+1=6n+9,两式再相减得an+2-an=6,
由n=2得a1+a2+a1=12,a2=12-2a,
从而a2n=6n+6-2a;n=3得a1+a2+a3+a1+a2=27,a3=3+2a,从而a2n+1=6n-3+2a,
由条件得
a<12−2a
6n+6−2a<6n−3+2a
6n−3+2a<6(n+1)+6−2a

解之得
9
4
<a<
15
4

故答案为:(
9
4
15
4
)