早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求S=1/2^2+2/2^3+3/2^4+4/2^5+...+n/2^(n+1)的值的解题过程

题目详情
求S=1/2^2+2/2^3+3/2^4+4/2^5+...+n/2^(n+1)的值的解题过程
▼优质解答
答案和解析
S=1/2^2+2/2^3+3/2^4+4/2^5+...+n/2^(n+1)
则2S=1/2+2/2^2+3/2^3+4/2^4+...+n/2^n
2式相减得:
S=2S-S
=1/2+1/2^2+2/2^3+3/2^4+...+1/2^n-n/2^(n+1)
=1/2*[1-1/2^(n+1)]/(1-1/2)-n/2^(n+1)
=4-1/2^(n-1)-n/2^(n+1)
看了 求S=1/2^2+2/2^3...的网友还看了以下: