早教吧作业答案频道 -->数学-->
有十二个球,其中一个与另外十一个重量不一样,有一个天平只能称三次,问怎么称出那个重量不同的球?
题目详情
有十二个球,其中一个与另外十一个重量不一样,有一个天平只能称三次,问怎么称出那个重量不同的球?
▼优质解答
答案和解析
12个球和一个天平,现知道只有一个和其它的重量不同,问怎样称才能用三次就找到那个球?(注意此题并未说明那个球的重量是轻是重,所以需要仔细考虑)
参考答案1:
首先,把12个小球分成三等份,每份四只.
拿出其中两份放到天平两侧称(第一次)
情况一:天平是平衡的.
那么那八个拿上去称的小球都是正常的,特殊的在四个里面.
把剩下四个小球拿出三个放到一边,另一边放三个正常的小球(第二次)
如天平平衡,特殊的是剩下那个.
如果不平衡,在天平上面的那三个里.而且知道是重了还是轻了.
剩下三个中拿两个来称,因为已经知道重轻,所以就可以知道特殊的了.(第三次)
情况二:天平倾斜.
特殊的小球在天平的那八个里面.
把重的一侧四个球记为A1A2A3A4,轻的记为B1B2B3B4.
剩下的确定为四个正常的记为C.
把A1B2B3B4放到一边,B1和三个正常的C小球放一边.(第二次)
情况一:天平平衡了.
特殊小球在A2A3A4里面,而且知道特殊小球比较重.
把A2A3称一下,就知道三个里面哪个是特殊的了.(第三次)
情况二:天平依然是A1的那边比较重.
特殊的小球在A1和B1之间.
随便拿一个和正常的称,就知道哪个特殊了.(第三次)
情况三:天平反过来,B1那边比较重了.
特殊小球在B2B3B4中间,而且知道特殊小球比较轻.
把B2B3称一下,就知道哪个是特殊的了.(第三次)
参考答案2:
此称法称三次就保证找出那个坏球,并知道它比标准球重还是轻.
将十二个球编号为1-12.
第一次,先将1-4号放在左边,5-8号放在右边.
1.如果右重则坏球在1-8号.
第二次将2-4号拿掉,将6-8号从右边移到左边,把9-11号放
在右边.就是说,把1,6,7,8放在左边,5,9,10,11放在右边.
1.如果右重则坏球在没有被触动的1,5号.如果是1号,
则它比标准球轻;如果是5号,则它比标准球重.
第三次将1号放在左边,2号放在右边.
1.如果右重则1号是坏球且比标准球轻;
2.如果平衡则5号是坏球且比标准球重;
3.这次不可能左重.
2.如果平衡则坏球在被拿掉的2-4号,且比标准球轻.
第三次将2号放在左边,3号放在右边.
1.如果右重则2号是坏球且比标准球轻;
2.如果平衡则4号是坏球且比标准球轻;
3.如果左重则3号是坏球且比标准球轻.
3.如果左重则坏球在拿到左边的6-8号,且比标准球重.
第三次将6号放在左边,7号放在右边.
1.如果右重则7号是坏球且比标准球重;
2.如果平衡则8号是坏球且比标准球重;
3.如果左重则6号是坏球且比标准球重.
2.如果天平平衡,则坏球在9-12号.
第二次将1-3号放在左边,9-11号放在右边.
1.如果右重则坏球在9-11号且坏球较重.
第三次将9号放在左边,10号放在右边.
1.如果右重则10号是坏球且比标准球重;
2.如果平衡则11号是坏球且比标准球重;
3.如果左重则9号是坏球且比标准球重.
2.如果平衡则坏球为12号.
第三次将1号放在左边,12号放在右边.
1.如果右重则12号是坏球且比标准球重;
2.这次不可能平衡;
3.如果左重则12号是坏球且比标准球轻.
3.如果左重则坏球在9-11号且坏球较轻.
第三次将9号放在左边,10号放在右边.
1.如果右重则9号是坏球且比标准球轻;
2.如果平衡则11号是坏球且比标准球轻;
3.如果左重则10号是坏球且比标准球轻.
3.如果左重则坏球在1-8号.
第二次将2-4号拿掉,将6-8号从右边移到左边,把9-11号放
在右边.就是说,把1,6,7,8放在左边,5,9,10,11放在右边.
1.如果右重则坏球在拿到左边的6-8号,且比标准球轻.
第三次将6号放在左边,7号放在右边.
1.如果右重则6号是坏球且比标准球轻;
2.如果平衡则8号是坏球且比标准球轻;
3.如果左重则7号是坏球且比标准球轻.
2.如果平衡则坏球在被拿掉的2-4号,且比标准球重.
第三次将2号放在左边,3号放在右边.
1.如果右重则3号是坏球且比标准球重;
2.如果平衡则4号是坏球且比标准球重;
3.如果左重则2号是坏球且比标准球重.
3.如果左重则坏球在没有被触动的1,5号.如果是1号,
则它比标准球重;如果是5号,则它比标准球轻.
第三次将1号放在左边,2号放在右边.
1.这次不可能右重.
2.如果平衡则5号是坏球且比标准球轻;
3.如果左重则1号是坏球且比标准球重;
参考答案3:
|--右--( 1轻)
|--右--(1 ; 2)|--平--( 5重)
| |--左--( )
|
| |--右--( 2轻)
|--右--(1,6-8; |--平--(2 ; 3)|--平--( 4轻)
| 5,9-11)| |--左--( 3轻)
| |
| | |--右--( 7重)
| |--左--(6 ; 7)|--平--( 8重)
| |--左--( 6重)
|
| |--右--(10重)
| |--右--(9 ;10)|--平--(11重)
| | |--左--( 9重)
| |
| | |--右--(12重)
(1-4;5-8)|--平--(1-3; |--平--(1 ;12)|--平--(13轻, 13重)*
| 9-11)| |--左--(12轻)
| |
| | |--右--( 9轻)
| |--左--(9 ;10)|--平--(11轻)
| |--左--(10轻)
|
| |--右--( 6轻)
| |--右--(6 ; 7)|--平--( 8轻)
| | |--左--( 7轻)
| |
| | |--右--( 3重)
|--左--(1,6-8; |--平--(2 ; 3)|--平--( 4重)
5,9-11)| |--左--( 2重)
|
| |--右--( )
|--左--(1 ; 2)|--平--( 5轻)
|--左--( 1重)
参考答案1:
首先,把12个小球分成三等份,每份四只.
拿出其中两份放到天平两侧称(第一次)
情况一:天平是平衡的.
那么那八个拿上去称的小球都是正常的,特殊的在四个里面.
把剩下四个小球拿出三个放到一边,另一边放三个正常的小球(第二次)
如天平平衡,特殊的是剩下那个.
如果不平衡,在天平上面的那三个里.而且知道是重了还是轻了.
剩下三个中拿两个来称,因为已经知道重轻,所以就可以知道特殊的了.(第三次)
情况二:天平倾斜.
特殊的小球在天平的那八个里面.
把重的一侧四个球记为A1A2A3A4,轻的记为B1B2B3B4.
剩下的确定为四个正常的记为C.
把A1B2B3B4放到一边,B1和三个正常的C小球放一边.(第二次)
情况一:天平平衡了.
特殊小球在A2A3A4里面,而且知道特殊小球比较重.
把A2A3称一下,就知道三个里面哪个是特殊的了.(第三次)
情况二:天平依然是A1的那边比较重.
特殊的小球在A1和B1之间.
随便拿一个和正常的称,就知道哪个特殊了.(第三次)
情况三:天平反过来,B1那边比较重了.
特殊小球在B2B3B4中间,而且知道特殊小球比较轻.
把B2B3称一下,就知道哪个是特殊的了.(第三次)
参考答案2:
此称法称三次就保证找出那个坏球,并知道它比标准球重还是轻.
将十二个球编号为1-12.
第一次,先将1-4号放在左边,5-8号放在右边.
1.如果右重则坏球在1-8号.
第二次将2-4号拿掉,将6-8号从右边移到左边,把9-11号放
在右边.就是说,把1,6,7,8放在左边,5,9,10,11放在右边.
1.如果右重则坏球在没有被触动的1,5号.如果是1号,
则它比标准球轻;如果是5号,则它比标准球重.
第三次将1号放在左边,2号放在右边.
1.如果右重则1号是坏球且比标准球轻;
2.如果平衡则5号是坏球且比标准球重;
3.这次不可能左重.
2.如果平衡则坏球在被拿掉的2-4号,且比标准球轻.
第三次将2号放在左边,3号放在右边.
1.如果右重则2号是坏球且比标准球轻;
2.如果平衡则4号是坏球且比标准球轻;
3.如果左重则3号是坏球且比标准球轻.
3.如果左重则坏球在拿到左边的6-8号,且比标准球重.
第三次将6号放在左边,7号放在右边.
1.如果右重则7号是坏球且比标准球重;
2.如果平衡则8号是坏球且比标准球重;
3.如果左重则6号是坏球且比标准球重.
2.如果天平平衡,则坏球在9-12号.
第二次将1-3号放在左边,9-11号放在右边.
1.如果右重则坏球在9-11号且坏球较重.
第三次将9号放在左边,10号放在右边.
1.如果右重则10号是坏球且比标准球重;
2.如果平衡则11号是坏球且比标准球重;
3.如果左重则9号是坏球且比标准球重.
2.如果平衡则坏球为12号.
第三次将1号放在左边,12号放在右边.
1.如果右重则12号是坏球且比标准球重;
2.这次不可能平衡;
3.如果左重则12号是坏球且比标准球轻.
3.如果左重则坏球在9-11号且坏球较轻.
第三次将9号放在左边,10号放在右边.
1.如果右重则9号是坏球且比标准球轻;
2.如果平衡则11号是坏球且比标准球轻;
3.如果左重则10号是坏球且比标准球轻.
3.如果左重则坏球在1-8号.
第二次将2-4号拿掉,将6-8号从右边移到左边,把9-11号放
在右边.就是说,把1,6,7,8放在左边,5,9,10,11放在右边.
1.如果右重则坏球在拿到左边的6-8号,且比标准球轻.
第三次将6号放在左边,7号放在右边.
1.如果右重则6号是坏球且比标准球轻;
2.如果平衡则8号是坏球且比标准球轻;
3.如果左重则7号是坏球且比标准球轻.
2.如果平衡则坏球在被拿掉的2-4号,且比标准球重.
第三次将2号放在左边,3号放在右边.
1.如果右重则3号是坏球且比标准球重;
2.如果平衡则4号是坏球且比标准球重;
3.如果左重则2号是坏球且比标准球重.
3.如果左重则坏球在没有被触动的1,5号.如果是1号,
则它比标准球重;如果是5号,则它比标准球轻.
第三次将1号放在左边,2号放在右边.
1.这次不可能右重.
2.如果平衡则5号是坏球且比标准球轻;
3.如果左重则1号是坏球且比标准球重;
参考答案3:
|--右--( 1轻)
|--右--(1 ; 2)|--平--( 5重)
| |--左--( )
|
| |--右--( 2轻)
|--右--(1,6-8; |--平--(2 ; 3)|--平--( 4轻)
| 5,9-11)| |--左--( 3轻)
| |
| | |--右--( 7重)
| |--左--(6 ; 7)|--平--( 8重)
| |--左--( 6重)
|
| |--右--(10重)
| |--右--(9 ;10)|--平--(11重)
| | |--左--( 9重)
| |
| | |--右--(12重)
(1-4;5-8)|--平--(1-3; |--平--(1 ;12)|--平--(13轻, 13重)*
| 9-11)| |--左--(12轻)
| |
| | |--右--( 9轻)
| |--左--(9 ;10)|--平--(11轻)
| |--左--(10轻)
|
| |--右--( 6轻)
| |--右--(6 ; 7)|--平--( 8轻)
| | |--左--( 7轻)
| |
| | |--右--( 3重)
|--左--(1,6-8; |--平--(2 ; 3)|--平--( 4重)
5,9-11)| |--左--( 2重)
|
| |--右--( )
|--左--(1 ; 2)|--平--( 5轻)
|--左--( 1重)
看了 有十二个球,其中一个与另外十...的网友还看了以下:
有6个零件,知道有1个是次品,他比正品要轻一点,其他5个正品零件都一样重你能用天平称的办法,最多称2 2020-03-31 …
有6个零件,知道有1个是次品,他比正品要轻一点,其他5个正品零件都一样重.你能用天平称的办法,最多 2020-05-20 …
想一想,填一填,1.3颗外观相同的珍珠,1颗略轻,用天平称()次,可以找出这颗轻一些的珍珠.2.2 2020-06-06 …
某学生用一架不等臂天平称药品,第一次将左盘放入50克砝码,右盘子放入药品使天平平衡,第二次将右盘放 2020-07-04 …
12个硬币,其中一个是假的,不知是轻还是重.用天平称三次,怎样称可以称出这枚假硬币,且知道它是重还 2020-07-13 …
天平称次品25个乒乓球中有一个次品,次品比正品轻.现在有一个天平,只能称三次.请问如何把次品称出来 2020-07-24 …
用托盘天平称量一粒黄豆的质量,下列方法中可取的是()A.认真称量一次一粒黄豆的质量B.认真称量多次一 2020-11-03 …
两千个零件中有个次品,至少用天平几次才能找出这个次品有两千个零件,其中有一个次品(次品轻一些),用天 2020-11-15 …
在众多物品里有1个较轻的次品,用天平称来找次品,一般来说,平均分成()份来称,找出次品所需要的次数最 2020-11-24 …
这道题怎么算。有5瓶多种维生素,其中一瓶少了4片,如果用天平称,每次称1瓶,至少称多少次才能找到少药 2020-12-22 …