早教吧作业答案频道 -->数学-->
如图,已知点A,点B在第一,三象限的角平分线上,P为直线AB上的一点,PA=PB,AM、BN分别垂直与x轴、y轴,连接PM、PN.(1)求直线AB的解析式;(2)如图1,P、A、B在第三象限,猜想PM,PN之
题目详情
如图,已知点A,点B在第一,三象限的角平分线上,P为直线AB上的一点,PA=PB,AM、BN分别垂直与x轴、y轴,连接PM、PN.

(1)求直线AB的解析式;
(2)如图1,P、A、B在第三象限,猜想PM,PN之间的关系,并说明理由;
(3)点P、A在第三象限,点B在第一象限,如图2其他条件不变,(2)中的结论还成立吗,请证明你的结论.

(1)求直线AB的解析式;
(2)如图1,P、A、B在第三象限,猜想PM,PN之间的关系,并说明理由;
(3)点P、A在第三象限,点B在第一象限,如图2其他条件不变,(2)中的结论还成立吗,请证明你的结论.
▼优质解答
答案和解析
(1)∵点A,点B在第一,三象限的角平分线上,
∴直线AB的解析式是y=x;

(2)PM=PN且PM⊥PN,
理由是:过P作PE⊥x轴于E,PF⊥y轴于F,过A作AQ⊥y轴于Q,
∵A在第一、三象限的角平分线上,PM⊥x轴于M,
∴AM=AQ,∠AMO=90°,∠MOA=45°,
∴∠MAO=∠MOA=45°,
∴OM=AM,
同理OQ=AQ,
∴OM=OQ,
同理OE=OF,PE=PF,
在△MEP和△NFP中
∴△MEP≌△NFP(SAS),
∴PM=PN,∠EPM=∠NPF,
∵PE⊥x轴,PF⊥y轴,x轴⊥y轴,
∴∠EOF=∠OEP=∠OFP=90°,
∴∠EPF=90°,
∴∠MPN=∠MPE+∠EPN=∠FPN+∠EPN=∠EPF=90°,
即PM⊥PN;
(3)成立;

证明:延长BN交AM于E,连接EP,
∵A、B在第一、三象限角的角平分线上,
∴∠MOA=∠BON=45°,
∵∠BNO=∠AMO=90°,
∴∠NBO=∠EAO=∠NOB=45°,
∴AE=BE,BN=ON,
∵∠ENO=∠NOM=∠EMO=90°,
∴四边形EMON是矩形,
∴ME=ON=BN,∠AEB=90°,
∵P为AB中点,AE=BE,
∴∠MEP=∠NBP=45°,EP=PB,∠EPB=90°,
在△EMP和△BNP中
∴△EMP≌△BNP(SAS),
∴PM=PN,∠EPM=∠NPB,
∵∠EPB=90°,
∴∠MPN=∠MPE+∠EPN=∠BPN+∠EPN=∠EPB=90°,
即PM⊥PN.
∴直线AB的解析式是y=x;

(2)PM=PN且PM⊥PN,
理由是:过P作PE⊥x轴于E,PF⊥y轴于F,过A作AQ⊥y轴于Q,
∵A在第一、三象限的角平分线上,PM⊥x轴于M,
∴AM=AQ,∠AMO=90°,∠MOA=45°,
∴∠MAO=∠MOA=45°,
∴OM=AM,
同理OQ=AQ,
∴OM=OQ,
同理OE=OF,PE=PF,
在△MEP和△NFP中
|
∴△MEP≌△NFP(SAS),
∴PM=PN,∠EPM=∠NPF,
∵PE⊥x轴,PF⊥y轴,x轴⊥y轴,
∴∠EOF=∠OEP=∠OFP=90°,
∴∠EPF=90°,
∴∠MPN=∠MPE+∠EPN=∠FPN+∠EPN=∠EPF=90°,
即PM⊥PN;
(3)成立;

证明:延长BN交AM于E,连接EP,
∵A、B在第一、三象限角的角平分线上,
∴∠MOA=∠BON=45°,
∵∠BNO=∠AMO=90°,
∴∠NBO=∠EAO=∠NOB=45°,
∴AE=BE,BN=ON,
∵∠ENO=∠NOM=∠EMO=90°,
∴四边形EMON是矩形,
∴ME=ON=BN,∠AEB=90°,
∵P为AB中点,AE=BE,
∴∠MEP=∠NBP=45°,EP=PB,∠EPB=90°,
在△EMP和△BNP中
|
∴△EMP≌△BNP(SAS),
∴PM=PN,∠EPM=∠NPB,
∵∠EPB=90°,
∴∠MPN=∠MPE+∠EPN=∠BPN+∠EPN=∠EPB=90°,
即PM⊥PN.
看了 如图,已知点A,点B在第一,...的网友还看了以下:
如图,已知△ABC的面积是12,BC=6.P点在BC边上滑动,PD∥AB交AC于D.如果BP=x, 2020-05-14 …
已知曲线C的极坐标方程ρ=2,给定两点P(0,π/2),Q(-2,π),则有()A.P在曲线C上, 2020-05-15 …
6.设A与B互为对立事件,且P(A)>0,P(B)>0,则下列各式中错误的是( )A. p(a补| 2020-05-16 …
已知p>q>1,0<a<1,则下列各式中正确的是()A.ap>aqB.pa>qaC.a-p<a-q 2020-06-12 …
如图,在直角坐标系中,O为原点.点A在第一象限,它的纵坐标是横坐标的3倍,反比例函数y=12x的图 2020-06-21 …
如图:在平面直角坐标系中,点P的坐标为(3,4)直线l过点P且与x轴平行.点A在x轴上,点B在直线 2020-06-29 …
已知O、A、M、B为平面上四点,且OM=λOB+(1-λ)OA,λ∈(1,2),则()A.点M在线 2020-07-24 …
在△ABC中,已知AB=AC=4cm,BC=6cm,D是BC的中点,以D为圆心作一个半径为3cm的 2020-07-26 …
若三棱锥S-ABC的顶点S在底面上的射影H在△ABC的内部,且是△ABC的垂心,则()A.三条侧棱 2020-07-30 …
下图示意某地区某月等温线分布,读图完成:小题1:该地区所在半球及图示月份为A.北半球7月B.北半球1 2020-11-02 …