早教吧作业答案频道 -->数学-->
(2013年四川攀枝花12分)如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1.0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的
题目详情
(2013年四川攀枝花12分)如图,抛物线y=ax 2 +bx+c经过点A(﹣3,0),B(1.0),C(0,﹣3). ![]() (1)求抛物线的解析式; (2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标; (3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由. |
▼优质解答
答案和解析
(1)由于抛物线y=ax 2 +bx+c经过A(﹣3,0),B(1,0),可设抛物线的解析式为:y=a(x+3)(x﹣1), 将C点坐标(0,﹣3)代入,得:a(0+3)(0﹣1)=5,解得 a=1。 ∴抛物线的解析式为:y=(x+3)(x﹣1),即y=x 2 +2x﹣3。 (2)如图1,过点P作x轴的垂线,交AC于点N. ![]() 设直线AC的解析式为y=kx+m,由题意,得 ![]() ![]() ∴直线AC的解析式为:y=﹣x﹣3。 设P点坐标为(x,x 2 +2x﹣3), 则点N的坐标为(x,﹣x﹣3), ∴PN=PE﹣NE=﹣(x 2 +2x﹣3)+(﹣x﹣3)=﹣x 2 ﹣3x。 ∵S △ PAC =S △ PAN +S △ PCN , ∴ ![]() ∴当x= ![]() ![]() ![]() ![]() (3)在y轴上是否存在点M,能够使得△ADE是直角三角形。理由如下: ∵y=x 2 +2x﹣3=y=(x+1) 2 ﹣4,∴顶点D的坐标为(﹣1,﹣4)。 ∵A(﹣3,0),∴AD 2 =(﹣1+3) 2 +(﹣4﹣0) 2 =20。 设点M的坐标为(0,t),分三种情况进行讨论: ①当A为直角顶点时,如图2, ![]() 由勾股定理,得AM 2 +AD 2 =DM 2 , 即(0+3) 2 +(t﹣0) 2 +20=(0+1) 2 +(t+4) 2 ,解得t= ![]() ∴点M的坐标为(0, ![]() ②当D为直角顶点时,如图3, ![]() 由勾股定理,得DM 2 +AD 2 =AM 2 , 即(0+1) 2 +(t+4) 2 +20=(0+3) 2 +(t﹣0) 2 ,解得t= ![]() ∴点M的坐标为(0, ![]() ③当M为直角顶点时,如图4, ![]() 由勾股定理,得AM 2 +DM 2 =AD 2 , 即(0+3) 2 +(t﹣0) 2 +(0+1) 2 +(t+4) 2 =20,解得t=﹣1或﹣3。 ∴点M的坐标为(0,﹣1)或(0,﹣3)。 综上所述,在y轴上存在点M,能够使得△ADE是直角三角形,此时点M的坐标为(0, ![]() ![]() |
(1)已知抛物线上的三点坐标,利用待定系数法可求出该二次函数的解析式。 (2)过点P作x轴的垂线,交AC于点N,先运用待定系数法求出直线AC的解析式,设P点坐标为(x,x 2 +2x﹣3),根据AC的解析式表示出点N的坐标,再根据S △ PAC =S △ PAN +S △ PCN 就可以表示出△PAC的面积,运用顶点式就可以求出结论。 (3)分三种情况进行讨论:①以A为直角顶点;②以D为直角顶点;③以M为直角顶点;设点M的坐标为(0,t),根据勾股定理列出方程,求出t的值即可。 |
看了 (2013年四川攀枝花12分...的网友还看了以下:
下列叙述正确的个数是()①作正弦函数图像是,单位园的半径与x轴的单位长度可以不一致;②y=sinx 2020-05-14 …
某厂生产的滚珠直径服从正态分布N(2.05,0.01)合格品的规格直径为2加减0.2,求该厂滚珠的 2020-06-10 …
(1)若函数y=2+cosx,求函数的最大值并求出相应的x.(2)用“五点作图法”列表,描点(1) 2020-06-25 …
设ab不等于0 且b>a 求一次函数y=ax+b y=bx+a图像交点的坐标在同一平面直角坐标系中 2020-06-27 …
函数一元二次函数的解析式一元二次函数f(x)的图象经过p(0,-2),求f(x)的解析式.设f(x 2020-08-01 …
关于反三角函数已知三角函数求角的类型题希望给出具体的分析过程如下题:sinx=-1/3(1)x∈- 2020-08-03 …
1.dy/dx=(xy^2-cosxsinx)/(y(1-x^2)),y(0)=2求y2.xydx+ 2020-10-31 …
画出函数Y等于2X减3的图像,利用图像回答问题1当X等于2是,Y的值1当X等于2是,Y的值,2求图像 2021-01-08 …
如图,已知点a与b的坐标分别为(4,0),(0,2),求:①直线AB的解析式(2)过点C(2,0)的 2021-01-11 …
如图所示,质量为30kg的雪橇在与水平面成30度角的拉力作用下,沿水平面向右作直线运动,经0.5s速 2021-01-11 …