早教吧作业答案频道 -->数学-->
数学中什么是三次齐项式?条件充分性判断:1.M+N=4abc(1),M=a(b+c-a)^2+b(c+a-b)^2+c(a+b-c)^2N=(b+c-a)*(c+a-b)*(a+c-b)
题目详情
数学中什么是三次齐项式?
条件充分性判断:1.M+N=4abc (1),M=a(b+c-a)^2+b(c+a-b)^2+c(a+b-c)^2 N=(b+c-a)*(c+a-b)*(a+c-b)
条件充分性判断:1.M+N=4abc (1),M=a(b+c-a)^2+b(c+a-b)^2+c(a+b-c)^2 N=(b+c-a)*(c+a-b)*(a+c-b)
▼优质解答
答案和解析
三次齐项式
没听过啊
充分性就是证明当
M=a(b+c-a)^2+b(c+a-b)^2+c(a+b-c)^2
N=(b+c-a)(c+a-b)(a+b-c)时
M+N=4abc
证明如下:
N=a(b+c-a)(c+a-b)+b(b+c-a)(c+a-b)-c(b+c-a)(c+a-b)
M+N=a(b+c-a)(b+c-a+c+a-b)+b(c+a-b)(c+a-b+b+c-a)+c(a+b-c)^2-c(b+c-a)(c+a-b)
=2ac(b+c-a)+2bc(c+a-b)+c(a+b-c)^2-c(b+c-a)(c+a-b)
=c(b+c-a)[2a-(c+a-b)]+2bc(c+a-b)+c(a+b-c)^2
=c(b+c-a)(a+b-c)+2bc(c+a-b)+c(a+b-c)^2
=c(a+b-c)(b+c-a+a+b-c)+2bc(c+a-b)
=2bc(a+b-c)+2bc(c+a-b)
=2bc(a+b-c+c+a-b)
=4abc
所以充分性得证.
没听过啊
充分性就是证明当
M=a(b+c-a)^2+b(c+a-b)^2+c(a+b-c)^2
N=(b+c-a)(c+a-b)(a+b-c)时
M+N=4abc
证明如下:
N=a(b+c-a)(c+a-b)+b(b+c-a)(c+a-b)-c(b+c-a)(c+a-b)
M+N=a(b+c-a)(b+c-a+c+a-b)+b(c+a-b)(c+a-b+b+c-a)+c(a+b-c)^2-c(b+c-a)(c+a-b)
=2ac(b+c-a)+2bc(c+a-b)+c(a+b-c)^2-c(b+c-a)(c+a-b)
=c(b+c-a)[2a-(c+a-b)]+2bc(c+a-b)+c(a+b-c)^2
=c(b+c-a)(a+b-c)+2bc(c+a-b)+c(a+b-c)^2
=c(a+b-c)(b+c-a+a+b-c)+2bc(c+a-b)
=2bc(a+b-c)+2bc(c+a-b)
=2bc(a+b-c+c+a-b)
=4abc
所以充分性得证.
看了 数学中什么是三次齐项式?条件...的网友还看了以下:
设a,b,c分别是三角形ABC的三个内角,A,B,C所对的边.则a的平方=b(b+c)是A=2B的 2020-04-05 …
填空题(1)直线2X-3Y+4=0和X+2Y-5=0的交点坐标为(2)平行于X轴的直线的倾斜角为- 2020-05-17 …
设实数a\b\c是三角行的三条边长,且满足条件条件(x+a)(x+b)+(x+b)(X+c)+(x 2020-06-12 …
将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则 2020-06-20 …
下列说法:(1)满足a+b>c的a、b、c三条线段一定能组成三角形;(2)三角形的三条高交于三角形 2020-07-19 …
高中立体几何1已知a和b是两条直线,a不平行于b,a和b的交集是空集,则a与b()2已知a,b,c 2020-08-02 …
对于同一平面内的三条直线abc给出下列五个判断(1)a‖b(2)b‖c(3)a⊥b(4)a∥c(5) 2020-11-02 …
下列命题中,真命题的个数是()①同位角相等;②a,b,c是三条直线,若a⊥b,b⊥c,则a⊥c.③a 2020-11-02 …
用一串链条连接三个齿轮A/B/C,已知齿轮A有23个齿,B、C齿轮各有46个齿,链条有85节,在链条 2020-11-08 …
如图,点A、B、C是直线l上的三个点,图中共有线段和射线条数分别是()A.一条,二条B.二条,三条C 2020-11-19 …