早教吧作业答案频道 -->数学-->
已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4.(1)若Cn=an*bn(n∈N*),求数列Cn的前n项和Tn
题目详情
已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4.(1)若Cn=an*bn (n∈N*),求数列Cn的前n项和Tn
▼优质解答
答案和解析
∵an=Sn - S(n-1)
=n²-(n-1)²
=2n-1
∴该数列是公差为2的等差数列,其中a1=1
数列{bn}为等比数列,所以:
b4/b3 = 2 = q
因此:
bn = 2^(n-1)
根据题设:
cn =an*bn
=(2n-1)·[2^(n-1)]
∴
Tn = 1·1 + 3·2 + 5·2² + 7·2³ +.+(2n-3)·[2^(n-2)]+(2n-1)·[2^(n-1)]
2Tn= 1·2 + 3·2² + 5·2³ +.+(2n-5)·[2^(n-2)]+(2n-3)·[2^(n-1)]+(2n-1)·[2^(n)]
上述两式相减:
-Tn= 1·1 + 2×(2+2²+2³+.+2^(n-1)) - (2n-1)·[2^(n)]
= 1 + 2·[2^(n)] - 4 - (2n-1)·[2^(n)]
= -(2n-3)·[2^(n)] -3
因此:
Tn = (2n-3)·[2^(n)] +3
∵an=Sn - S(n-1)
=n²-(n-1)²
=2n-1
∴该数列是公差为2的等差数列,其中a1=1
数列{bn}为等比数列,所以:
b4/b3 = 2 = q
因此:
bn = 2^(n-1)
根据题设:
cn =an*bn
=(2n-1)·[2^(n-1)]
∴
Tn = 1·1 + 3·2 + 5·2² + 7·2³ +.+(2n-3)·[2^(n-2)]+(2n-1)·[2^(n-1)]
2Tn= 1·2 + 3·2² + 5·2³ +.+(2n-5)·[2^(n-2)]+(2n-3)·[2^(n-1)]+(2n-1)·[2^(n)]
上述两式相减:
-Tn= 1·1 + 2×(2+2²+2³+.+2^(n-1)) - (2n-1)·[2^(n)]
= 1 + 2·[2^(n)] - 4 - (2n-1)·[2^(n)]
= -(2n-3)·[2^(n)] -3
因此:
Tn = (2n-3)·[2^(n)] +3
看了 已知数列{an}的前n项和S...的网友还看了以下:
1.已知数列{An}满足{An/n}是公差为1,的等差数列,且An+1=(n+2/n)·An+1( 2020-04-09 …
已知数列{an},{bn}满足a1=7,b1=4,且an+1=an+2bnbn+1=4bn-an求 2020-05-17 …
在数列{an}中,a1=2,a2=8,且已知函数f(x)=1/3(an+2-an+1)x³-(3a 2020-06-02 …
设函数f(x)=根号下x2+4,若一个正数数列{an}满足:a1=1,an+1=f(an),求数列 2020-06-03 …
fx=x/x+2,数列an满足a1=1,an+1=f(an)求数列an的通项公式若数列bn满足bn 2020-06-11 …
数列an,log3bn均为等差数列,a1=f(x+1),a2=0,a3=f(x-1),其中f(x) 2020-07-09 …
求高手解题,题目是关于数列的已知递推求通项数列{an}中an=1.(n+1)an+1=an.求an 2020-07-11 …
是数列的已知递推求通项数列{an}中an=1.(n+1)an+1=an.求an=? 2020-07-11 …
已知函数f(x)=x/(x+1),若数列{an}(n∈N*)满足:a1=1,an+1=f(an), 2020-07-23 …
已知函数f(x)=x/x+1,若数列{an}满足a1=1,an+1=f(an),设数列{cn}满足 2020-07-29 …