早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在△ABC中,AB=AC,cosB=1/3,BC=2,点D、E、F分别在AC、AB、BC上,△BEF沿直线EF翻折后与△DEF重合.(1)D为AC中点时,求BF的长.(2)设CD=x,BF=y,求y与x的函数解析式及定义域.

题目详情
在△ABC中,AB=AC,cosB=1/3,BC=2,点D、E、F分别在AC、AB、BC上,△BEF沿直线EF翻折后与△DEF重合.
(1)D为AC中点时,求BF的长.
(2)设CD=x,BF=y,求y与x的函数解析式及定义域.
▼优质解答
答案和解析
1、过点A作AH⊥BC,垂足为H,
∵AB=AC,∴BH=1/2BC=1,
∴AC=AB=BH/cosB=3
2 过点D作DG⊥BC,垂足为G,
∴CD=1/2AC=3/2,
∴CG=BC•cosC=3/2×1/3=1/2,
DG=根号(CD²-CG²)=根号《(3/2)²-(1/2)²》=2,
设BF=y,则DF=y,FG=2-y-1/2=3/2-y,
∵DG²+FG²=DF²,
∴(2)²+(3/2-y)²=y平方,
∴y=17/12;
CG=1/3x,DG=(2根号2/3)x,
FG=2-1/3x-y,
(2根号2/3*x)²+(2-1/3x-y)²=y²,
∴函数解析式为:y=(3x²-4x²+12)÷(12-2x) (0<x<2).