早教吧作业答案频道 -->数学-->
已知二次函数y=-x2+4x+5图像交x轴于点A、B,交y轴于点C,点D是该函数图像上一点,且点D的横坐标为4,连BD,点P是AB上一动点(不与点A重合),过P作PQ⊥AB交射线AD于点Q,以PQ为一边在PQ的
题目详情
| 已知二次函数y=-x 2 +4x+5图像交x轴于点A、B,交y轴于点C,点D是该函数图像上一点,且点D的横坐标为4,连BD,点P是AB上一动点(不与点A重合),过P作PQ⊥AB交射线AD于点Q,以PQ为一边在PQ的右侧作正方形PQMN.设点P的坐标为(t,0). (1)求点B,C,D的坐标及射线AD的解析式; (2)在AB上是否存在点P,使⊿OCM为等腰三角形?若存在,求正方形PQMN的边长;若不存在,请说明理由; (3)设正方形PQMN与⊿ABD重叠部分面积为s,求s与t的函数关系式. |
▼优质解答
答案和解析
| (1)B(5,0),C(0,5),D(4,5) (2)∵直线AD的解析式为: ,且P(t,0)。 ∴Q(t,t+1),M(2t+1,t+1)当MC=MO时:t+1= ∴边长为 。 当OC=OM时: 解得 (舍去) ∴边长为 。 当CO=CM时: 解得 (舍去)∴边长为 。 (3)当 时: ; 当 时: ; 当 时: ; 当 时: ; |
| (1)根据二次函数解析式,当x=0时,求出C点坐标;当y=0时,求出B点坐标及点A坐标;将 D点横坐标代入y=-x2+4x+5,即可求出点D纵坐标;根据点A、点D坐标,应用待定系数法即可求出射线 AD解析式; (2)假设存在点P,使△OCM为等腰三角形,根据勾股定理,若能求出P点坐标,则P存在,同时可求出 正方形PQMN 的边长;否则P不存在; (3)由于重叠部分面积是不确定的,所以要根据其重叠程度,分情况讨论,得到不同的表达式. |
看了 已知二次函数y=-x2+4x...的网友还看了以下:
如图,已知△ABC和点P.(1)画△ABC关于点P的对称图形△A′B′C′;(2)过点P任意画一条 2020-05-02 …
如图所示,已知AB∥GH∥IJ∥CD,AD∥EF∥BC,过点M,N分别作两条直线,设它们相交于于点 2020-05-13 …
已知函数f(x)=1/2x^2+Plnx(P属于R,P不等于0) g(x)=2/3x^3 当P=1 2020-05-13 …
如图,一次函数的图象与反比例函数的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B 2020-05-14 …
如图矩形纸片ABCD,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P, 2020-05-15 …
如图,在三角形abc中,边ab,bc的垂直平分线相交于点p 求证pa=pb=pc 点p是否也在边a 2020-05-16 …
1.如图,已知抛物线于X轴交点A(-2,0),B(4,0).与y轴交点C(0,8)(2)设直线CD 2020-06-03 …
(2014•松江区三模)如图,已知正比例函数y=3x与反比例函数y=kx的图象都经过横坐标为1的点 2020-06-18 …
如图所示,等腰△ABC中,P为底边BC上任意一点,过P作两腰的平行线分别与AB、AC相交于Q、R两 2020-07-07 …
如图,点P是函数y=4/x在第一象限的图像上的任意一点,点P关于原点的对称点是P’,过点P做PA平 2020-07-29 …
,且P(t,0)。 ∴Q(t,t+1),M(2t+1,t+1)
∴边长为
(舍去)
。
(舍去)
。
时:
;
时:
;
时:
;
时:
;