早教吧作业答案频道 -->数学-->
将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C.(1)如图①,若∠A=40°时,点D在△ABC内,则∠ABC+∠ACB=度,∠DBC+∠DCB=度,∠ABD+∠ACD=
题目详情
将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C.

(1)如图①,若∠A=40°时,点D在△ABC内,则∠ABC+∠ACB=___度,∠DBC+∠DCB=___度,∠ABD+∠ACD=___度;
(2)如图②,改变直角三角板DEF的位置,使点D在△ABC内,请探究∠ABD+∠ACD与∠A之间存在怎样的数量关系,并验证你的结论.
(3)如图③,改变直角三角板DEF的位置,使点D在△ABC外,且在AB边的左侧,直接写出∠ABD、∠ACD、∠A三者之间存在的数量关系.

(1)如图①,若∠A=40°时,点D在△ABC内,则∠ABC+∠ACB=___度,∠DBC+∠DCB=___度,∠ABD+∠ACD=___度;
(2)如图②,改变直角三角板DEF的位置,使点D在△ABC内,请探究∠ABD+∠ACD与∠A之间存在怎样的数量关系,并验证你的结论.
(3)如图③,改变直角三角板DEF的位置,使点D在△ABC外,且在AB边的左侧,直接写出∠ABD、∠ACD、∠A三者之间存在的数量关系.
▼优质解答
答案和解析
(1)在△ABC中,∵∠A=40°,
∴∠ABC+∠ACB=180°-40°=140°,
在△DBC中,∵∠BDC=90°,
∴∠DBC+∠DCB=180°-90°=90°,
∴∠ABD+∠ACD=140°-90°=50°;
故答案为:140;90;50.
(2)∠ABD+∠ACD与∠A之间的数量关系为:∠ABD+∠ACD=90°-∠A.证明如下:
在△ABC中,∠ABC+∠ACB=180°-∠A.
在△DBC中,∠DBC+∠DCB=90°.
∴∠ABC+∠ACB-(∠DBC+∠DCB)=180°-∠A-90°.
∴∠ABD+∠ACD=90°-∠A.
(3)∠ACD-∠ABD=90°-∠A.
∴∠ABC+∠ACB=180°-40°=140°,
在△DBC中,∵∠BDC=90°,
∴∠DBC+∠DCB=180°-90°=90°,
∴∠ABD+∠ACD=140°-90°=50°;
故答案为:140;90;50.
(2)∠ABD+∠ACD与∠A之间的数量关系为:∠ABD+∠ACD=90°-∠A.证明如下:
在△ABC中,∠ABC+∠ACB=180°-∠A.
在△DBC中,∠DBC+∠DCB=90°.
∴∠ABC+∠ACB-(∠DBC+∠DCB)=180°-∠A-90°.
∴∠ABD+∠ACD=90°-∠A.
(3)∠ACD-∠ABD=90°-∠A.
看了 将一块直角三角板DEF放置在...的网友还看了以下:
在四边形abcd中,角a等于90度,角b比角c比角d等于一比二比三,则角b等于多少,角c等于多少,角 2020-03-30 …
在四边形ABCD中,若角A+角B=角C+角D,角C+2角D,则角C=答好追分! 2020-05-01 …
高二数学题(空间向量)设A,B,C,D为空间不共面的四点,且满足(向量AB)*(向量AC)=0,( 2020-05-13 …
若角A+角B=180°,角A与角C互补,则角B与角C的关系是()a相等b互补c互余d不能确定 2020-05-14 …
已知三角形的三条边长分别是根号a、根号b、根号c,若a^2+b^2=c^2,则此三角形是什么三角形 2020-05-14 …
已知集合A={第一象限角},B={锐角},C={小于90°的角},则下列关系中正确的是:A、A=B 2020-05-16 …
下列条件中不能判三角形ABC为直角三角形的为()A角A-角B=角CB,角A:角B:角C=1:1:2 2020-07-10 …
1.若三角形ABC的三边a,b,c满足条件:a^2+b^2+c^2+338=10a+24b+26c 2020-07-19 …
若a,b,c是三角形ABC的角A、B、C所对的三边,向量m=(asinA−bsinB,sinC), 2020-07-22 …
已知△ABC中,角ACB=90°PA.PB分别平分角BAC和角ABC,则角APB的度数为()下列条 2020-07-30 …