早教吧作业答案频道 -->数学-->
抛物线y=ax2+c与x轴交于A,B两点,顶点C,点P为抛物线上一点,且位于x轴下方.(1)如图1,若P(1,-3),B(4,0).D是抛物线上一点,满足∠DPO=∠POB,且D与B分布位于直线OP的两侧,求点C
题目详情
抛物线y=ax2+c与x轴交于A,B两点,顶点C,点P为抛物线上一点,且位于x轴下方.
(1)如图1,若P(1,-3),B(4,0).D是抛物线上一点,满足∠DPO=∠POB,且D与B分布位于直线OP的两侧,求点C与点D的坐标;
(2)如图2,A,B是抛物线y=ax2+c与x轴的两个交点,直线PA,PB与y轴分别交于E,F两点,当点P在x轴下方的抛物线上运动时,
是否为定值?若是,试求出该定值;若不是,请说明理由(记OA=OB=t)

(1)如图1,若P(1,-3),B(4,0).D是抛物线上一点,满足∠DPO=∠POB,且D与B分布位于直线OP的两侧,求点C与点D的坐标;
(2)如图2,A,B是抛物线y=ax2+c与x轴的两个交点,直线PA,PB与y轴分别交于E,F两点,当点P在x轴下方的抛物线上运动时,
OE+OF |
OC |

▼优质解答
答案和解析
(1)将P(1,-3),B(4,0)代入y=ax2+c,得
,
解得
,
抛物线的解析式为y=
x2-
.
∴C(0,-
)
如图
1,
当点D在OP左侧时,
由∠DPO=∠POB,得
DP∥OB,
D与P关于y轴对称,P(1,-3),
得D(-1,-3);
(2)点P运动时,
是定值,定值为2,理由如下:
作PQ⊥AB于Q点,设P(m,am2+c),A(-t,0),B(t,0),则at2+c=0,c=-at2.
∵PQ∥OF,
∴
=
,
∴OF=
=-
=
=amt+at2.
同理OE=-amt+at2.
∴OE+OF=2at2=-2c=2OC.
∴
=2.

|
解得
|
抛物线的解析式为y=
1 |
5 |
16 |
5 |
∴C(0,-
16 |
5 |
如图

当点D在OP左侧时,
由∠DPO=∠POB,得
DP∥OB,
D与P关于y轴对称,P(1,-3),
得D(-1,-3);
(2)点P运动时,
OE+OF |
OC |

作PQ⊥AB于Q点,设P(m,am2+c),A(-t,0),B(t,0),则at2+c=0,c=-at2.
∵PQ∥OF,
∴
PQ |
OF |
BQ |
BO |
∴OF=
PQ•BO |
BQ |
-(am2+c)t |
t-m |
(am2-at2)t |
m-t |
同理OE=-amt+at2.
∴OE+OF=2at2=-2c=2OC.
∴
OE+OF |
OC |
看了 抛物线y=ax2+c与x轴交...的网友还看了以下:
关于高中抛物线1.已知抛物线的顶点是双曲线16x^2-9y^2=144的中心而焦点是双曲线的左顶点 2020-05-14 …
已知;抛物线Y=ax^2+2x+c,对称轴位直线x=-1,抛物线与y轴交与点c抛物线与Y轴交于点C 2020-05-16 …
过第四象限的直线与抛物线交于点A(0,3)和和点C,已知点C是抛物线的顶点,且抛物线的对称轴与Y粥 2020-05-16 …
椭圆、抛物线以椭圆E:(x^2)/4+y^2=1的上顶点为焦点的抛物线C的标准方程为x^2=2py 2020-06-21 …
如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么,我们称抛物线C1与 2020-07-09 …
将抛物线C1:y=18(x+1)2-2绕点P(t,2)旋转180゜得到抛物线C2,若抛物线C1的顶 2020-07-09 …
端点在抛物线上的定长线段的中点的轨迹是什么?已知:抛物线P:y^2=2px,线段AB的端点A、B在 2020-07-31 …
已知抛物线y²=2px﹙p>0﹚的焦点为F,点p是抛物线上的一点,且抛物线上的一点,且其纵坐标为4 2020-08-01 …
顶点在坐标原点,开口向上的抛物线经过点,过点作抛物线的切线交x轴于点B1,过点B1作x轴的垂线交抛物 2020-11-04 …
已知抛物线C:x2=2py(p>0)的焦点为F,A,B为抛物线上异于坐标原点O的不同两点,抛物线C在 2021-01-01 …