早教吧作业答案频道 -->数学-->
已知定圆A:(x+1)^2+y^2=16,圆心为A,动圆M过点B(1,0)且和圆A相切,动圆的圆心M的轨迹记为C.(1)求曲线C的方程(2)若点P(x0,y0)为曲线C上一点,求证:直线l:3x0x+4y0y-12=0与曲线C有且只有一个交点
题目详情
已知定圆A:(x+1)^2+y^2=16,圆心为A,动圆M过点B(1,0)且和圆A相切,动圆的圆心M的轨迹记为C.
(1)求曲线C的方程
(2)若点P(x0,y0)为曲线C上一点,求证:直线l:3x0x+4y0y-12=0与曲线C有且只有一个交点
(1)求曲线C的方程
(2)若点P(x0,y0)为曲线C上一点,求证:直线l:3x0x+4y0y-12=0与曲线C有且只有一个交点
▼优质解答
答案和解析
给你说下大致思路吧:
(1).由圆M过点B(1,0)且与圆A相切,则你会推出圆M圆心的轨迹是和圆A同圆心的一个圆,这样就可设轨迹C的方程为(x-1)^2+y^2=k^2,然后又知道其过B点,将B带入假设的方程就可得出K,即得出方程.
(2).有一个焦点就表示其与曲线C有一个焦点,这样曲线C(即圆C)的圆心到该直线的距离为C的半径,列一个等式再加上P点在曲线C上,就可得到两个等式,可证明结论~
(1).由圆M过点B(1,0)且与圆A相切,则你会推出圆M圆心的轨迹是和圆A同圆心的一个圆,这样就可设轨迹C的方程为(x-1)^2+y^2=k^2,然后又知道其过B点,将B带入假设的方程就可得出K,即得出方程.
(2).有一个焦点就表示其与曲线C有一个焦点,这样曲线C(即圆C)的圆心到该直线的距离为C的半径,列一个等式再加上P点在曲线C上,就可得到两个等式,可证明结论~
看了 已知定圆A:(x+1)^2+...的网友还看了以下:
圆锥曲线的已知椭圆C:x^2/2+y^2=1的右焦点为F,右准线为l,点A属于l,线段AF交C于点 2020-04-08 …
已知f(x)=ax-1x,g(x)=lnx,(x>0,a∈R是常数).(1)求曲线y=g(x)在点 2020-05-13 …
点P在曲线C x²/4+y²=1上,若若存在过P的直线交曲线C于A点,交直线l:x=4于B点,(长 2020-05-13 …
(2010•江门一模)已知f(x)=ax−1x,g(x)=lnx,(x>0,a∈R是常数).(1) 2020-05-13 …
过点(0,1)作曲线L:y=lnx的切线,切点为A.又L与x轴交于B点,区城D由L、x轴与直线AB 2020-07-11 …
若A是定直线l外的一定点,则过点A且与l相切的圆的圆心的轨迹是?答案是抛物线,为什么不可以是双曲线 2020-07-30 …
(2014•广州模拟)已知动圆C过定点M(0,2),且在x轴上截得弦长为4.设该动圆圆心的轨迹为曲 2020-07-30 …
坐标系测试方程直角坐标系xOy中,l参数方程x=3-√3t/2,y=1t/2(t为参数),以O为极 2020-07-31 …
5.图l和图2表示出生率、死亡率、净补充量(为出生率、死亡率之差)和种群密度的关系,下列有关叙述正确 2020-11-11 …
按所给读音组词没有错误的一组是[]A、曲(qǔ)歌曲乐曲弯曲B、降(jiàng)降落投降空降C、相( 2020-12-30 …