早教吧作业答案频道 -->其他-->
在整数集Z中,被4除所得余数为k的所有整数组成一个“类”,记为[k]={4n+k|n∈Z},k=0,1,2,3,则下列结论正确的为①2014∈[2];②-1∈[3];③Z=[0]∪[1]∪[2]∪[3];④命题“整数a,b满足a∈[
题目详情
在整数集Z中,被4除所得余数为k的所有整数组成一个“类”,记为[k]={4n+k|n∈Z},k=0,1,2,3,则下列结论正确的为______
①2014∈[2];
②-1∈[3];
③Z=[0]∪[1]∪[2]∪[3];
④命题“整数a,b满足a∈[1],b∈[2],则a+b∈[3]”的原命题与逆命题都正确;
⑤“整数a,b属于同一类”的充要条件是“a-b∈[0]”
①2014∈[2];
②-1∈[3];
③Z=[0]∪[1]∪[2]∪[3];
④命题“整数a,b满足a∈[1],b∈[2],则a+b∈[3]”的原命题与逆命题都正确;
⑤“整数a,b属于同一类”的充要条件是“a-b∈[0]”
▼优质解答
答案和解析
由类的定义[k]={4n+k|n∈Z},k=0,1,2,3,可知,只要整数m=4n+k,n∈Z,k=0,1,2,3,则m∈[k].
对于①2014=4×503+2,∴2014∈[2],故①符合题意;
对于②-1=4×(-1)+3,∴-1∈[3],故②符合题意;
对于③所有的整数按被4除所得的余数分成四类,即余数分别是0,1,2,3的整数,即四“类”[0],[1],[2],[3],所以Z=[0]∪[1]∪[2]∪[3],故③符合题意;
对于④原命题成立,但逆命题不成立,∵若a+b∈[3],不妨取a=0,b=3,则此时a∉[1]且b∉[1],∴逆命题不成立,∴④不符合题意;
对于⑤∵“整数a,b属于同一类”不妨令a=4m+k,b=4n+k,m,n∈Z,且k=0,1,2,3,则a-b=4(m-n)+0,∴a-b∈[0];
反之,不妨令a=4m+k1,b=4n+k2,则a-b=4(m-n)+(k1-k2),若a-b∈[0],则k1-k2=0,即k1=k2,所以整数a,b属于同一类.故整数a,b属于同一类”的充要条件是“a-b∈[0].故⑤符合题意.
故答案为①②③⑤
对于①2014=4×503+2,∴2014∈[2],故①符合题意;
对于②-1=4×(-1)+3,∴-1∈[3],故②符合题意;
对于③所有的整数按被4除所得的余数分成四类,即余数分别是0,1,2,3的整数,即四“类”[0],[1],[2],[3],所以Z=[0]∪[1]∪[2]∪[3],故③符合题意;
对于④原命题成立,但逆命题不成立,∵若a+b∈[3],不妨取a=0,b=3,则此时a∉[1]且b∉[1],∴逆命题不成立,∴④不符合题意;
对于⑤∵“整数a,b属于同一类”不妨令a=4m+k,b=4n+k,m,n∈Z,且k=0,1,2,3,则a-b=4(m-n)+0,∴a-b∈[0];
反之,不妨令a=4m+k1,b=4n+k2,则a-b=4(m-n)+(k1-k2),若a-b∈[0],则k1-k2=0,即k1=k2,所以整数a,b属于同一类.故整数a,b属于同一类”的充要条件是“a-b∈[0].故⑤符合题意.
故答案为①②③⑤
看了 在整数集Z中,被4除所得余数...的网友还看了以下:
若正数x,y满足8x+4y-8xy+5=0则4^x+2^y最小值是多少只有一个答案不行哒 2020-04-27 …
整式的乘法6题~1.x^2-y^2-x+y=(x-y)A,则A=.2.已知2^x=3,2^y=5, 2020-04-27 …
设A与B均为N阶矩阵,则下列结论正确的是:A若/AB/=0则A=0或B=0B若/AB/=0,则/A 2020-05-14 …
excel 公式.A列一排数字,B列内容为:=A减去1000后的结果如果是小于等于0则计数为0,如 2020-05-16 …
已知|x-2|=8,则x的值为,绝对值不大于4的整数和是0减去a的相反数,结果是,-1/3的绝对值 2020-07-09 …
已知(x+y-6)²+丨xy+6丨=0,则4(x-y)²-(x-y)的四次方+760= 2020-07-09 …
一道直线的问题a≠b且a^2sinA+acosA-2=0b^2sinA+bcosA-2=0.则连结 2020-07-13 …
设U=R,集合A={y|y=根号x-1,x=>1},B={x∈Z丨x^2-4=>0},则下列结论正 2020-07-30 …
1.已知0<α<β<γ<2π,且sinα+sinβ+sinγ=0,cosα+cosβ+cosγ=0 2020-08-02 …
下列结论不正确的是()A.若a>0,b<0,则a-b>0B.若a<0,b>0,则a-b<0C.若a< 2020-12-23 …