早教吧作业答案频道 -->其他-->
若对任意的x∈0,t(t>0),存在实数a,使得关于x的不等式e^x(e^2x+a^2)-2ae^2x≤1恒成立,则t的取值范围不好意思,
题目详情
若对任意的x∈【0,t】(t>0),存在实数a,使得关于x的不等式e^x(e^2x+a^2)-2ae^2x≤1恒成立,则t的取值范围
不好意思,
不好意思,
▼优质解答
答案和解析
将(e^x)*(e^2x+a^2)-2ae^2x≤1 整理得:
e^3x+(a^2)*(e^x)-2a* (e^2)-1≤0
故此问题等价于求方程e^3x+(a^2)*(e^x)-2a* (e^2)-1≤0有解
假设m=e^x则方程化为关于a的一元二次方程m*a^2-2(m^2 )a+m^3 -1≤0有解
只需方程m*a^2-2(m^2 )a+m^3 -1的最小值≤0即可;
而方程m*a^2-2(m^2 )a+m^3 -1的最小值=m^3-1-{[-2(m^2 )]^2} /(4m^4)
=-1恒小于0
所以
则t的取值范围t>0;
e^3x+(a^2)*(e^x)-2a* (e^2)-1≤0
故此问题等价于求方程e^3x+(a^2)*(e^x)-2a* (e^2)-1≤0有解
假设m=e^x则方程化为关于a的一元二次方程m*a^2-2(m^2 )a+m^3 -1≤0有解
只需方程m*a^2-2(m^2 )a+m^3 -1的最小值≤0即可;
而方程m*a^2-2(m^2 )a+m^3 -1的最小值=m^3-1-{[-2(m^2 )]^2} /(4m^4)
=-1恒小于0
所以
则t的取值范围t>0;
看了 若对任意的x∈0,t(t>0...的网友还看了以下:
设f(x)=[g(x)-e^(-x)]/x(x不等于0)0(x=0),其中g(x)是有二阶连续函数 2020-05-17 …
已知复合函数f(e^x)=e^x+x求不定积分∫f(x)dx求不定积分∫√(x-1)^3/xdx第 2020-06-03 …
limx->无穷,x*(e^(1/x)-1)我知道答案是用洛比达法则求导分子e^(1/x)-1求导 2020-06-27 …
y=a^x对x求导,下面有两种求法,1、y=a^x=(e^lna)^x=e^(xlna)所以:y‘ 2020-07-20 …
问一道高等数学题f(x)=x·e^(-1/x)g(x)=x·e^(-1/(x^2))判断两曲线有无 2020-08-01 …
f(x)=e的X次方-1/e的X次方>ax恒成立设函数f(x)=e的x次方-e的-x次方.证明(1) 2020-11-10 …
已知函数f(x)=e^x—x—1.(I)若函数g(x)=—e^x+x+a+1,x属于[—1,ln已知 2020-12-08 …
1若F(X)在X0连续,则F(X)的绝对值,F(X)的平方在X0是否连续?反之,是否成立?2F(X) 2020-12-09 …
设函数f(x)=e的x次方-e负的x次方证明:f(x)的导数大于等于2;若对所有x≥0都有f(x)≥ 2021-02-16 …
求y=(x²-x)e^(1-x)的导数?后面是e的(1-x)次方.结果是不是(2x-1)e^(1-x 2021-02-16 …