早教吧作业答案频道 -->数学-->
已知一次函数y1=x+b的图象与二次函数y2=a(x2+bx+)(a≠0,a,b为常数)的图象交于A、B两点,且点A的坐标为(0,3).(1)求出a,b的值,并写出函数y1,y2的解析式;(2)验证点B的坐标为(
题目详情
已知一次函数y1=x+b的图象与二次函数y2=a(x2+bx+)(a≠0,a,b为常数)的图象交于A、B两点,且点A的坐标为(0,3).
(1)求出a,b的值,并写出函数y1,y2的解析式;
(2)验证点B的坐标为(-2,1),并写出当y1≥y2时x的取值范围;
(3)设s=y1+y2,t=y1-y2,若n≤x≤m时,s随着x的增大而增大,且t也随着x的增大而增大,求n的最小值和m的最大值.
(1)求出a,b的值,并写出函数y1,y2的解析式;
(2)验证点B的坐标为(-2,1),并写出当y1≥y2时x的取值范围;
(3)设s=y1+y2,t=y1-y2,若n≤x≤m时,s随着x的增大而增大,且t也随着x的增大而增大,求n的最小值和m的最大值.
▼优质解答
答案和解析
(1)把A(0,3)代入y1=x+b得:b=3,
∴一次函数解析式:y1=x+3,
把A(0,3)代入y2=a(x2+3x+3)(a≠0,a,b为常数)得3a=3,解得:a=1,
∴二次函数的解析式为:y2=x2+3x+3;
(2)把x=-2,分别代入y1=x+3,y2=x2+3x+3,
得:y1=-2+3=1,y2=(-2)2+3×(-2)+3=1,
所以B的坐标为(-2,1),
∵二次函数的解析式为:y2=x2+3x+3;
∴抛物线的开口向上,
∵A的坐标为(0,3),B的坐标为(-2,1),
∴当-2≤x≤0时,y1≥y2;
(3)∵y1=x+3,y2=x2+3x+3,
∴s=y1+y2=x2+4x+6,t=y1-y2=-x2-2x,
即s=x2+4x+6,t=-x2-2x,
∴抛物线s=x2+4x+6的对称轴为x=-2,抛物线t=-x2-2x的对称轴为x=-1,
∵当x>-2时,s随x的增大而增大,当x<-1,t随x的增大而增大,
又∵n≤x≤m时,s随着x的增大而增大,且t也随着x的增大而增大,
∴n的最小值为-2和m的最大值-1.
∴一次函数解析式:y1=x+3,
把A(0,3)代入y2=a(x2+3x+3)(a≠0,a,b为常数)得3a=3,解得:a=1,
∴二次函数的解析式为:y2=x2+3x+3;
(2)把x=-2,分别代入y1=x+3,y2=x2+3x+3,
得:y1=-2+3=1,y2=(-2)2+3×(-2)+3=1,
所以B的坐标为(-2,1),
∵二次函数的解析式为:y2=x2+3x+3;
∴抛物线的开口向上,
∵A的坐标为(0,3),B的坐标为(-2,1),
∴当-2≤x≤0时,y1≥y2;
(3)∵y1=x+3,y2=x2+3x+3,
∴s=y1+y2=x2+4x+6,t=y1-y2=-x2-2x,
即s=x2+4x+6,t=-x2-2x,
∴抛物线s=x2+4x+6的对称轴为x=-2,抛物线t=-x2-2x的对称轴为x=-1,
∵当x>-2时,s随x的增大而增大,当x<-1,t随x的增大而增大,
又∵n≤x≤m时,s随着x的增大而增大,且t也随着x的增大而增大,
∴n的最小值为-2和m的最大值-1.
看了 已知一次函数y1=x+b的图...的网友还看了以下:
若方程组2x-y=a x+y=b的解是x=11 y=8 2020-05-13 …
直线y=kx+b与直线y=-3x平行,且过点(-3,2)则直线y=kx+b的解析式为直线y=kx+ 2020-05-13 …
已知方程组ax+y=b cx+y=d的解是x=1、y=-2,已知a、b、c、d都是常数,且a不等于 2020-05-16 …
[已知方程组2x-y=7,ax+y=b,与方程组x+by=a,3x+y=8的解相同,求a,b的值[ 2020-05-16 …
若方程组﹛a₁x+b₁y=c₁ 的解是﹛x=3 ,则方程组﹛a₁(x-1)+b₁(y+1)=c₁ 2020-05-16 …
已知x=1y=3和x=0y=−2都是方程ax-y=b的解,求a与b的值. 2020-06-13 …
1、如果方程组x+y=4,x-(m-1)y=6中的解x、y相同,则m的值是多少?2、关于x、y的方 2020-06-27 …
已知一次函数y=kx+b的图象过点A(3,0),B(-1,2),(1)求直线AB的解析式;(2)在 2020-07-25 …
已知{x=1,y=3和{x=0,y=﹣2都是方程ax﹣y=b的解,求a+b的值要用图像方法解 2020-08-01 …
已知{x=1,y=3和{x=0,y=﹣2都是方程ax﹣y=b的解,求a+b的值 2020-08-01 …