早教吧作业答案频道 -->数学-->
求解抛物线的题已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都有坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A,B两点.1.写出抛物线C2的标准方程、2.若向量AM=1/2MB向量,求直线
题目详情
求解抛物线的题
已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都有坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A,B两点.
1.写出抛物线C2的标准方程、
2.若向量AM=1/2MB向量,求直线l的方程、
3.若坐标原点o关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值
已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都有坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A,B两点.
1.写出抛物线C2的标准方程、
2.若向量AM=1/2MB向量,求直线l的方程、
3.若坐标原点o关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值
▼优质解答
答案和解析
1):y^2=4x①(此时无声胜有声)
2):设直线:y=k(x-4)② ①②得到:k²x²-(4+8k)x+16k=0,
设A(x1,y1),B(x2,y2),x1+x2=(4+8k)k^2⑤
由2=
得到:2(4-x1)=x2-4③,2k(4-x1)=k(x2-4)④
③④⑤得到:(3k+1)(k-1)=0,所以k=1/3或者k=1(验证过了均可取,用△ >0验证)
3):设椭圆x²/a²+y²/(a²-1)=1⑥
设P(y²/4,y),则-1/k=4y/y²即y=-4k
OP中点为E(2k²,-2k),带入直线k(2k²-4)+2k=0解得k=1或者-1
②⑥得到(a²-1)x²+a²(x-4)²-a²(a²-1)=0,由△=(2a²-17)(a²-1) ≥0
解得:a² ≥17/2
2):设直线:y=k(x-4)② ①②得到:k²x²-(4+8k)x+16k=0,
设A(x1,y1),B(x2,y2),x1+x2=(4+8k)k^2⑤
由2=
得到:2(4-x1)=x2-4③,2k(4-x1)=k(x2-4)④
③④⑤得到:(3k+1)(k-1)=0,所以k=1/3或者k=1(验证过了均可取,用△ >0验证)
3):设椭圆x²/a²+y²/(a²-1)=1⑥
设P(y²/4,y),则-1/k=4y/y²即y=-4k
OP中点为E(2k²,-2k),带入直线k(2k²-4)+2k=0解得k=1或者-1
②⑥得到(a²-1)x²+a²(x-4)²-a²(a²-1)=0,由△=(2a²-17)(a²-1) ≥0
解得:a² ≥17/2
看了 求解抛物线的题已知椭圆C1和...的网友还看了以下:
过抛物线焦点F的直线与抛物线交于A,B两点,若A B 在抛物线准线上的射影分别为A1 B1 则角A 2020-05-13 …
已知抛物线C的顶点在原点焦点F在x轴正半轴上设AB是抛物线C上的两个动点已知抛物线C的顶点在原点, 2020-05-16 …
(高二数学题,求助求助,非常紧急,非常感谢)给定抛物线C:y=(-1/2)x^2,点A,B在抛物线 2020-06-05 …
抛物线y=ax^2+bx(a>0)与双曲线y=k/x相交于点A、B,已知点A的坐标为(1,4),△ 2020-06-14 …
已知直线y=3x-3分别与x轴、y轴交于点A,B,抛物线y=ax2+2x+c经过点A,B.(1)求 2020-07-26 …
已知抛物线C:y^2=4x的焦点为F,直线L经过点F且与抛物线C相交于点A,B.已知抛物线C:y^ 2020-07-29 …
端点在抛物线上的定长线段的中点的轨迹是什么?已知:抛物线P:y^2=2px,线段AB的端点A、B在 2020-07-31 …
已知抛物线的顶点在原点,准线方程为x=1/4,该抛物线与过点(-1,0)的直线交于A,B.已知抛物 2020-07-31 …
给出下列条件,无法确定该物质摩尔质量的是()A.已知气体在标准状况时的密度B.已知物质的体积和质量C 2020-11-06 …
已知抛物线C:x2=2py(p>0)的焦点为F,A,B为抛物线上异于坐标原点O的不同两点,抛物线C在 2021-01-01 …