早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知ABCDEF是正六边形,O为其中心.点M与点N分别为线段DE与线段OB的中点.已知△FNO与△FME的面积总和为3平方厘米,请问此正六边形的面积为多少平方厘米?

题目详情
已知ABCDEF是正六边形,O为其中心.点M与点N分别为线段DE与线段OB的中点.已知△FNO与△FME的面积总和为3平方厘米,请问此正六边形的面积为多少平方厘米?
▼优质解答
答案和解析
如图:

取AB的中点H,连接FH,FB,
则△AHF≌EMF,及△AHF的面积=△EMF的面积,
H为AB的中点,△FBH的底FB与△FAH的底FA长度相等,高均为F向AB边所做的垂线段,所以△FAH的面积=△FBH的面积;
N是线段OB的中点,所以△FBN的底等于△FND的底的长度,高均为点F向OB所做的垂线段,所以△FBN的面积等于△FND的面积,所以△FNO与△FME的面积总和为四边形ABOF面积的一半.
连接OD得:六边形的面积等于四边形ABOF面积的3倍,已知△FNO与△FME的面积总和为3平方厘米,所以六边形的面积为3×2×4=18(平方厘米)
故答案为:18平方厘米.