早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知数列{an}中,a1=1,其前n项和为Sn,且满足an=2Sn22Sn-1(n≥2)(1)求Sn;(2)证明:当n≥2时,S1+12S2+13S3+…+1nSn<32-12n.

题目详情
已知数列{an}中,a1=1,其前n项和为Sn,且满足an=
2Sn2
2Sn-1
(n≥2)
(1)求Sn
(2)证明:当n≥2时,S1+
1
2
S2+
1
3
S3+…+
1
n
Sn<
3
2
-
1
2n
▼优质解答
答案和解析
(1) 由an=
2Sn2
2Sn-1
(n≥2),得Sn-Sn-1=
2Sn2
2Sn-1

∴Sn-1-Sn=2SnSn-1,得
1
Sn
-
1
Sn-1
=2,
∴数列{
1
Sn
}是以1为首项,以2为公差的等差数列,
1
Sn
=
1
S1
+(n-1)×2=2n-1,
Sn=
1
2n-1

(2)证明:当n≥2时,
1
n
Sn=
1
n(2n-1)
<
1
n(2n-2)
=
1
2
(
1
n-1
-
1
n
),
∴S1+
1
2
S2+
1
3
S3+…+
1
n
Sn<1+
1
2
(
1
1
-
1
2
)+
1
2
(
1
2
-
1
3
)+…+
1
2
(
1
n-1
-
1
n
)=
3
2
-
1
2n