早教吧作业答案频道 -->数学-->
如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.(1)求证:梯形ABCD是等腰梯形;(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与
题目详情
如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.

(1)求证:梯形ABCD是等腰梯形;
(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式;
(3)在(2)中:
①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;
②当y取最小值时,判断△PQC的形状,并说明理由.

(1)求证:梯形ABCD是等腰梯形;
(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式;
(3)在(2)中:
①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;
②当y取最小值时,判断△PQC的形状,并说明理由.
▼优质解答
答案和解析
(1)证明:∵△MBC是等边三角形,
∴MB=MC,∠MBC=∠MCB=60°.
∵M是AD中点,
∴AM=MD.
∵AD∥BC,
∴∠AMB=∠MBC=60°,∠DMC=∠MCB=60°.
∴△AMB≌△DMC.
∴AB=DC.
∴梯形ABCD是等腰梯形.
(2) 在等边△MBC中,MB=MC=BC=4,∠MBC=∠MCB=60°,∠MPQ=60°,
∴∠BMP+∠BPM=∠BPM+∠QPC=120°.
∴∠BMP=∠QPC.
∴△BPM∽△CQP.
∴
=
.
∵PC=x,MQ=y,
∴BP=4-x,QC=4-y.
∴
=
.
∴y=
x2-x+4.

(3) ①当BP=1时,则有BP
AM,BP
MD,
则四边形BPDM为平行四边形,
∴MQ=y=
×32-3+4=
.
当BP=3时,则有PC
AM,PC
MD,
则四边形APCM为平行四边形,
∴MQ=y=
×12-1+4=
.
∴当BP=1,MQ=
或BP=3,MQ=
时,
以P、M和A、B、C、D中的两个点为顶点的四边形是平行四边形.此时平行四边形有2个.
②△PQC为直角三角形.
∵y=
(x-2)2+3,
∴当y取最小值时,x=PC=2.
∴P是BC的中点,MP⊥BC,而∠MPQ=60°,
∴∠CPQ=30°,
∴∠PQC=90°.
∴△PQC是直角三角形.
∴MB=MC,∠MBC=∠MCB=60°.
∵M是AD中点,
∴AM=MD.
∵AD∥BC,
∴∠AMB=∠MBC=60°,∠DMC=∠MCB=60°.
∴△AMB≌△DMC.
∴AB=DC.
∴梯形ABCD是等腰梯形.
(2) 在等边△MBC中,MB=MC=BC=4,∠MBC=∠MCB=60°,∠MPQ=60°,
∴∠BMP+∠BPM=∠BPM+∠QPC=120°.
∴∠BMP=∠QPC.
∴△BPM∽△CQP.
∴
| PC |
| BM |
| CQ |
| BP |
∵PC=x,MQ=y,
∴BP=4-x,QC=4-y.
∴
| x |
| 4 |
| 4-y |
| 4-x |
∴y=
| 1 |
| 4 |

(3) ①当BP=1时,则有BP
| ||
. |
| ||
. |
则四边形BPDM为平行四边形,
∴MQ=y=
| 1 |
| 4 |
| 13 |
| 4 |
当BP=3时,则有PC
| ||
. |
| ||
. |
则四边形APCM为平行四边形,
∴MQ=y=
| 1 |
| 4 |
| 13 |
| 4 |
∴当BP=1,MQ=
| 13 |
| 4 |
| 13 |
| 4 |
以P、M和A、B、C、D中的两个点为顶点的四边形是平行四边形.此时平行四边形有2个.
②△PQC为直角三角形.
∵y=
| 1 |
| 4 |
∴当y取最小值时,x=PC=2.
∴P是BC的中点,MP⊥BC,而∠MPQ=60°,
∴∠CPQ=30°,
∴∠PQC=90°.
∴△PQC是直角三角形.
看了 如图,在梯形ABCD中,AD...的网友还看了以下:
如果线段AB=13㎝MA+MB=17㎝下列说法正确的是()A.M点在线段AB上B.M点在如果线段A 2020-04-27 …
14.如图4,有一块梯形铁板ABCD,AB‖CD,∠A=90°,AB=6 m,CD=4 m,AD= 2020-05-15 …
已知,A,B,C三点在同一直线上,三角形ABC和三角形BCE都是等边三角形,AE交BD于M,CD交 2020-05-23 …
求证:(1)A(n+1,n+1)-A(n,n)=n^2A(n-1,n-1);(2)C(m,n+1) 2020-06-03 …
1.x>0,y>0,a=x+y,b=√(x²+xy+y²),c=m√xy求是否存在正数m,使对任意 2020-06-12 …
如图(1),由线段AB、AM、CM、CD组成的图形像英文字母M,称为“M形BAMCD”.(1)如图 2020-06-13 …
如图所示,水平地面上的L形木板M上放着小木块m,M与m间有一个处于压缩状态的弹簧,整个装置处于静止 2020-07-21 …
(2011•湖州)如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是B 2020-07-29 …
已知P是圆C:x2+y2=4上的动点,P在x轴上的射影为P′,点M满足PM=MP′,当P在圆上运动 2020-07-30 …
下列关于物体重心的说法正确的是()A.重心就是物体上最重的一点B.物体的重心位置一定要在物体上C.形 2020-12-01 …