早教吧作业答案频道 -->其他-->
如图,直线y=-x+1与x轴交于点A,与y轴交于点B,P(a,b)为双曲线y=12x(x>0)上的一点,PM⊥x轴于M,交AB于E,PN⊥y轴于N,交AB于F.(1)用含a,b的代数式表示E、F两点的坐标及△EOF的面积;(
题目详情
如图,直线y=-x+1与x轴交于点A,与y轴交于点B,P(a,b)为双曲线y=
(x>0)上的
一点,PM⊥x轴于M,交AB于E,PN⊥y轴于N,交AB于F.
(1)用含a,b的代数式表示E、F两点的坐标及△EOF的面积;
(2)△EOF与△BOE是否相似?如果相似,请证明;如果不相似,请说明理由;
(3)无论点P在双曲线第一象限部分上怎样移动,证明∠EOF是一个定值.
1 |
2x |

(1)用含a,b的代数式表示E、F两点的坐标及△EOF的面积;
(2)△EOF与△BOE是否相似?如果相似,请证明;如果不相似,请说明理由;
(3)无论点P在双曲线第一象限部分上怎样移动,证明∠EOF是一个定值.
▼优质解答
答案和解析
(1)由题意知:A(1,0),B(0,1);
则:OA=OB=1,∠OBA=∠OAB=45°,△BNF、△EMA为等腰直角三角形;
∴BN=NF=1-b,EM=MA=1-a,即E(a,1-a),F(1-b,b);
S△EOF=S△AOF-S△AOE=
b-
(1-a)=
×1×[b-(1-a)]=
(a+b-1).
(2)已知:B(0,1)、E(a,1-a)、F(1-b,b);
则PF=PN-FN=a-(1-b)=a+b-1,PE=PM-EM=b-(1-a)=a+b-1,
在直角三角形PEF中,根据勾股定理得:EF=
=
(a+b-1),
同理:OE=
=
,BE=
=
a;
因此:OE2=2a2-2a+1,EF•BE=2a(a+b-1)=2a2-2a+2ab;
由于点P在反比例函数的图象
则:OA=OB=1,∠OBA=∠OAB=45°,△BNF、△EMA为等腰直角三角形;

∴BN=NF=1-b,EM=MA=1-a,即E(a,1-a),F(1-b,b);
S△EOF=S△AOF-S△AOE=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
(2)已知:B(0,1)、E(a,1-a)、F(1-b,b);
则PF=PN-FN=a-(1-b)=a+b-1,PE=PM-EM=b-(1-a)=a+b-1,
在直角三角形PEF中,根据勾股定理得:EF=
(a+b−1)2+(b−1+a)2 |
2 |
同理:OE=
a2+(1−a)2 |
2a2−2a+1 |
a2+(1−a−1)2 |
2 |
因此:OE2=2a2-2a+1,EF•BE=2a(a+b-1)=2a2-2a+2ab;
由于点P在反比例函数的图象
看了 如图,直线y=-x+1与x轴...的网友还看了以下:
x^2-y^2=a^2右准线交实轴于P,过P直线交双曲线A、B,过右焦点F引直线垂直AB交双曲线于 2020-04-08 …
已知圆C:x^2+y^2=4,将其作伸缩变换X'=2Xy'=y得到曲线P,若点R(1,0),点Q是 2020-05-12 …
已知抛物线Y等于aX²—2X+c与它的对称轴相较于点A(1,-4),与y轴交与点C,与X轴正半轴交 2020-05-16 …
如图,已知双曲线y1=1/x(x>0),y2=k/x(x>0),点p为双曲线y2=k/x上的一动点 2020-06-15 …
已知点P是抛物线y^2=-4x上一点,设P到此抛物线准线距离是d1,到直线x+y-7=0的距离是已 2020-07-09 …
有一在原点处与x轴相切并在第一象限的光滑曲线,P(x,y)为曲线上的任一点.设曲线在原点与P点之间 2020-07-26 …
如图,直线y=6-x交x轴、y轴于A、B两点,P是反比例函数y=4x(x>0)图象上位于直线下方的 2020-07-26 …
如图,抛物线F:y=ax^2+bx+c的顶点为P,抛物线与y轴交于点A,与直线OP交于点B,过点P 2020-07-29 …
已知平面上的曲线C及点P,在C上任取一点Q,定义线段PQ长度的最小值为点P到曲线C的距离,记作d( 2020-07-30 …
已知点P(1,1)为椭圆C:x^2/9+y^2/4=1内一定点,过点P的弦AB在点P被平分,求弦AB 2020-11-27 …