早教吧作业答案频道 -->其他-->
一次函数f(x)是R上的增函数,g(x)=f(x)(x+m),已知f[f(x)]=16x+5一次函数f(x)是R上的增函数,g(x)=f(x)(x+m),已知f[f(x)]=16x+5①求fx②若gx在(1,+oo)单调递增,求实数m的取值范围③当x∈[-1,3]时,gx有最大值
题目详情
一次函数f(x)是R上的增函数,g(x)=f(x)(x+m),已知f[f(x)]=16x+5
一次函数f(x)是R上的增函数,g(x)=f(x)(x+m),已知f[f(x)]=16x+5
①求fx
②若gx在(1,+oo)单调递增,求实数m的取值范围
③当x∈[-1,3]时,gx有最大值13,求实数m的值
一次函数f(x)是R上的增函数,g(x)=f(x)(x+m),已知f[f(x)]=16x+5
①求fx
②若gx在(1,+oo)单调递增,求实数m的取值范围
③当x∈[-1,3]时,gx有最大值13,求实数m的值
▼优质解答
答案和解析
(1)设f(x)=ax+b,则f[f(x)]=a(ax+b)+b=(a^2)x+(a+1)b=16x+5.
因为f(x)是R上的增函数,故a=4,b=1.f(x)=4x+1
(2)g(x)=(4x+1)(x+m)=4x^2+(4m+1)x+m,其对称轴为x=-(4m+1)/8
因为g(x)在(1,+∞)单调递增,故对称轴应在x=1的左边,即-(4m+1)/8≤1,m≥-9/4
(3)因为g(x)开口向上,故闭区间上的最大值只能在区间端点处取得.
若g(-1)=13,m=-10/3,此时g(3)=-13/3.g(-1)>g(3),g(x)在x=-1处取得最大值13.
若g(3)=13,m=-2,此时g(-1)=9.g(3)>g(-1),g(x)在x=3处取得最大值13.
故m=-10/3或m=-2.
因为f(x)是R上的增函数,故a=4,b=1.f(x)=4x+1
(2)g(x)=(4x+1)(x+m)=4x^2+(4m+1)x+m,其对称轴为x=-(4m+1)/8
因为g(x)在(1,+∞)单调递增,故对称轴应在x=1的左边,即-(4m+1)/8≤1,m≥-9/4
(3)因为g(x)开口向上,故闭区间上的最大值只能在区间端点处取得.
若g(-1)=13,m=-10/3,此时g(3)=-13/3.g(-1)>g(3),g(x)在x=-1处取得最大值13.
若g(3)=13,m=-2,此时g(-1)=9.g(3)>g(-1),g(x)在x=3处取得最大值13.
故m=-10/3或m=-2.
看了 一次函数f(x)是R上的增函...的网友还看了以下:
设函数f(x)的定义域为R,有下列三个命题:①若存在常数M,使得对任意x∈R,有f(x)≤M,则M 2020-05-19 …
1.已知全集U={(x,y)|x∈R,y∈R},M={(x,y)|y-1/x+2,x∈R,y∈R} 2020-06-03 …
已知集合A={x|x²-2x-3≤0,x∈R},B{x|x²-2mx+m²-4≤0,x∈R,m∈R 2020-06-12 …
已知函数f(x)=m•2x+2•3x,m∈R.(1)当m=-9时,求满足f(x+1)>f(x)的实 2020-06-12 …
数学概念题.come in设函数f(x)的定义域为R,有下列三个命题1若存在常数M,使得对任意X属 2020-06-27 …
已知命题P:任意的X属于R,(m+1)(x^2+1)小于等于0;命题q:任意的x属于R,X^2+m 2020-07-22 …
函数的最值设函数f(x)的定义域为R,则下列四个命题:(1)若存在常数M,使得对于任意的x∈R,有 2020-07-25 …
1.设集合A={x丨x≤4},m=sin30°,则下列关系中正确的是.1.设集合A={x丨x≤4} 2020-07-29 …
设集合M={(x,y)|y=x,x,y属于R},M={(x,y)|x2+y2=0,x,y属于R}, 2020-08-02 …
序列x(n)={1,2,3,4}的自相关函数R(m),怎么求?R(m)=E[x(n)x(n+m)] 2020-12-05 …