早教吧作业答案频道 -->数学-->
已知函数f(x)=x3-(k2-k+1)x2+5x-2,g(x)=k2x2+kx+1,其中k∈R.(I)设函数p(x)=f(x)+g(x).若p(x)在区间(0,3)上不单调,求k的取值范围;(II)设函数是否存在k,对任意给定的非
题目详情
已知函数f(x)=x3-(k2-k+1)x2+5x-2,g(x)=k2x2+kx+1,其中k∈R.
(I)设函数p(x)=f(x)+g(x).若p(x)在区间(0,3)上不单调,求k的取值范围;
(II)设函数
是否存在k,对任意给定的非零实数x1,存在惟一的非零实数x2(x2≠x1),使得q′(x2)=q′(x1)?若存在,求k的值;若不存在,请说明理由.
(I)设函数p(x)=f(x)+g(x).若p(x)在区间(0,3)上不单调,求k的取值范围;
(II)设函数

▼优质解答
答案和解析
(I)因P(x)=f(x)+g(x)=x3+(k-1)x2+(k+5)x-1,先求导数:p′(x),因p(x)在区间(0,3)上不单调,得到p′(x)=0在(0,3)上有实数解,且无重根,再利用分离参数的方法得出
,最后再利用导数求出此函数的值域即可;
(II)先根据题意得出当k=0时不合题意,因此k≠0,下面讨论k≠0的情形,分类讨论:(ⅰ)当x1>0时,(ⅱ)当x1<0时,最后综合(ⅰ)(ⅱ)即可得出k值.
解析:(I)因P(x)=f(x)+g(x)=x3+(k-1)x2+(k+5)x-1,
p′(x)=3x2+2(k-1)x+(k+5),
因p(x)在区间(0,3)上不单调,所
以p′(x)=0在(0,3)上有实数解,且无重根,
由p′(x)=0得k(2x+1)=-(3x2-2x+5),
∴
,
令t=2x+1,有t∈(1,7),记
,
则h(t)在(1,3]上单调递减,在[3,7)上单调递增,所
以有h(t)∈[6,10),于是
,
得k∈(-5,-2],而当k=-2时有p′(x)=0在(0,3)上有两个相等的实根x=1,故舍去,
所以k∈(-5,-2);
(II)当x<0时有q′(x)=f′(x)=3x2-2(k2-k+1)x+5;
当x>0时有q′(x)=g′(x)=2k2x+k,
因为当k=0时不合题意,因此k≠0,
下面讨论k≠0的情形,记A=(k,+∞),B=(5,+∞)
(ⅰ)当x1>0时,q′(x)在(0,+∞)上单调递增,
所以要使q′(x2)=q′(x1)成立,只能x2<0且A⊆B,
因此有k≥5,
(ⅱ)当x1<0时,q′(x)在(-∞,0)上单调递减,
所以要使q′(x2)=q′(x1)成立,只能x2>0且A⊆B,
因此k≤5,综合(ⅰ)(ⅱ)k=5;
当k=5时A=B,则∀x1<0,q′(x1)∈B=A,即∃x2>0,
使得q′(x2)=q′(x1)成立,
因为q′(x)在(0,+∞)上单调递增,所以x2的值是唯一的;
同理,∀x1<0,即存在唯一的非零实数x2(x2≠x1),
要使q′(x2)=q′(x1)成立,所以k=5满足题意.

(II)先根据题意得出当k=0时不合题意,因此k≠0,下面讨论k≠0的情形,分类讨论:(ⅰ)当x1>0时,(ⅱ)当x1<0时,最后综合(ⅰ)(ⅱ)即可得出k值.
解析:(I)因P(x)=f(x)+g(x)=x3+(k-1)x2+(k+5)x-1,
p′(x)=3x2+2(k-1)x+(k+5),
因p(x)在区间(0,3)上不单调,所
以p′(x)=0在(0,3)上有实数解,且无重根,
由p′(x)=0得k(2x+1)=-(3x2-2x+5),
∴

令t=2x+1,有t∈(1,7),记

则h(t)在(1,3]上单调递减,在[3,7)上单调递增,所
以有h(t)∈[6,10),于是

得k∈(-5,-2],而当k=-2时有p′(x)=0在(0,3)上有两个相等的实根x=1,故舍去,
所以k∈(-5,-2);
(II)当x<0时有q′(x)=f′(x)=3x2-2(k2-k+1)x+5;
当x>0时有q′(x)=g′(x)=2k2x+k,
因为当k=0时不合题意,因此k≠0,
下面讨论k≠0的情形,记A=(k,+∞),B=(5,+∞)
(ⅰ)当x1>0时,q′(x)在(0,+∞)上单调递增,
所以要使q′(x2)=q′(x1)成立,只能x2<0且A⊆B,
因此有k≥5,
(ⅱ)当x1<0时,q′(x)在(-∞,0)上单调递减,
所以要使q′(x2)=q′(x1)成立,只能x2>0且A⊆B,
因此k≤5,综合(ⅰ)(ⅱ)k=5;
当k=5时A=B,则∀x1<0,q′(x1)∈B=A,即∃x2>0,
使得q′(x2)=q′(x1)成立,
因为q′(x)在(0,+∞)上单调递增,所以x2的值是唯一的;
同理,∀x1<0,即存在唯一的非零实数x2(x2≠x1),
要使q′(x2)=q′(x1)成立,所以k=5满足题意.
看了 已知函数f(x)=x3-(k...的网友还看了以下:
对于定义在(a,b)上的函数f(x),如果其是双射且在(a,b)上的一点c处连续1.问反函数是否一 2020-05-14 …
求大神赐教这三道马哲题1.形而上学否定观主张BDEA事物的自我否定B外力对事物存在性的消灭C包含肯 2020-05-22 …
无机化学已知:ϕoCu2+/Cu=0.34V,ϕoCu2+/Cu+=0.15V,CuCl(s)的l 2020-06-11 …
快椭圆G:x^2/4+y^2/3=1,直线l过左焦点F1(-1,0),且与椭圆G交于点A,B两点, 2020-06-30 …
关于原命题、否命题、命题的否定的几个疑问.请问1.是否所有的命题都有否命题?2.是否可能存在命题的 2020-07-09 …
关于非命题,命题的否定和否命题的问题.问一个关于命题的问题如何区分非p,命题的否定和否命题?例如p 2020-07-09 …
定义1:与四边形四边都相切的圆叫做四边形的内切圆.定义2:一组邻边相等,其他两边也相等的凸四边形叫 2020-07-25 …
正方形的9个小方格中给出3个数1、2、5,并填在其中任意的三个小方格中,是否一定存正方形的9个小方 2020-08-01 …
高中数学命题的否定与否命题如果是一个全称命题,那么它的否命题和命题的否定有何区别,麻烦举个离子,什 2020-08-01 …
1.事物内部都存在着肯定因素和否定因素.辩证否定观的基本内容是().A.否定是事物的自我否定B.否定 2020-12-09 …