早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知角a∈(π/4,π/2),且(4cosa-3sina)(2cosa-3sina)=0(1)tan(a+π/4)(2)co已知角a∈(π/4,π/2),且(4cosa-3sina)(2cosa-3sina)=0(1)tan(a+π/4)(2)cos(π/3-2a)

题目详情
已知角a∈(π/4,π/2 ),且(4cosa- 3sina )(2cosa- 3sina)=0 (1)tan( a+π/4)(2)co
已知角a∈(π/4,π/2 ),且(4cosa- 3sina )(2cosa- 3sina)=0 (1)tan( a+π/4)(2)cos(π/3-2a)
▼优质解答
答案和解析
由(4cosa- 3sina )(2cosa- 3sina)=0
得 4cosa- 3sina=0或2cosa- 3sina=0
即tana=4/3或2/3
又角a∈(π/4,π/2 ) 则tana∈(1,+∞)
故tana=4/3 则cosa=3/5,sina=4/5
tan( a+π/4)=(tana+tanπ/4)/(1-tana.tanπ/4 )=-7
cos(π/3-2a)=cosπ/3.cos2a +sinπ/3.sin2a
=(cosa.cosa-sina.sina)/2 + √3 sina.cosa
=(24√3 - 7)/50