早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知F1、F2分别是椭圆的左、右焦点,P是此椭圆上的一动点,并且的取值范围是.(Ⅰ)求此椭圆的方程;(Ⅱ)点A是椭圆的右顶点,直线y=x与椭圆交于B、C两点(C在第一象限内),又P

题目详情
已知F1、F2分别是椭圆的左、右焦点,P是此椭圆上的一动点,并且的取值范围是
(Ⅰ)求此椭圆的方程;
(Ⅱ)点A是椭圆的右顶点,直线y=x与椭圆交于B、C两点(C在第一象限内),又P、Q是椭圆上两点,并且满足,求证:向量共线.
▼优质解答
答案和解析
【答案】分析:(I)由题意设P(x,y),F1(-c,0),F2(c,0)利用的取值范围所以∠PCQ的平分线垂直于x轴.是,得到a,b的方程,求解即可;(II)有的平分线平行,所以∠PCQ的平分线垂直于x轴,进而建立方程,解出C点,再设出PC方程进而得到QC的方程,把它与椭圆方程联立得到直线PQ的斜率,与直线AB比较即可求证.(Ⅰ)设P(x,y),F1(-c,0),F2(c,0),其中,.从而.由于,即.又已知,所以从而椭圆的方程是.(Ⅱ)因为的平分线平行,所以∠PCQ的平分线垂直于x轴.由解得.不妨设PC的斜率为k,则QC的斜率为-k,因此PC和QC的方程分别为y=k(x-1)+1,y=-k(x-1),其中消去y并整理得(1+3k2)x2-6k(k-1)x+3k2-6k-1=0(*).∵C(1,1)在椭圆上,∴x=1是方程(*)的一个根.从而,同理,从而直线PQ的斜率为.又知A(2,0),B(-1,-1),所以,∴向量与共线.点评:(I)此问考查了设处点的坐标,把已知的向量关系的等式建立成坐标之间的关系式,还考查了椭圆的基本性质及求解时运用的方程的思想;(II)此问考查了设出直线把椭圆方程与直线方程进行联立,利用根与系数的关系求出P与Q的坐标,还考查了直线的斜率公式.
看了 已知F1、F2分别是椭圆的左...的网友还看了以下:

在广州,摊贩经营非常活跃,但存在经营不规范现象。城市管理综合执法局拟划定区域建立固定经营场所的方式  2020-04-06 …

当下,我国很多地方摊贩经营非常活跃,但存在经营不规范现象。有的地方以建立固定经营场所的方式给小贩提  2020-04-06 …

当下,我国很多地方摊贩经营非常活跃,但存在经营不规范现象。有的地方以建立固定经营场所的方式给小摊贩  2020-04-06 …

当下,我国很多地方摊贩经营非常活跃,但存在经营不规范现象。有的地方以建立固定经营场所的方式给小贩提  2020-04-06 …

当下,我国很多地方摊贩经营非常活跃,但存在经营不规范现象。有的地方建立固定经营场所,给摊贩提供空间  2020-06-19 …

已知一次函数y=(2m+3)x+m-1.(1)若函数图象经过原点.求m的值;(2)若函数图象与y轴  2020-06-28 …

2016年1月24日,平和大芹山出现罕见的飘雪现象.有关雪的形成,正确的是()A.凝固现象且吸热B  2020-07-08 …

当下,我国很多地方摊贩经营非常活跃,但存在经营不规范现象。有的地方以建立固定经营场所的方式给小摊贩提  2020-12-03 …

双曲线中取值范围问题若点o和点f(-2,0)分别是双曲线:x平方除以a平方减y平方=1,且a大于0,  2020-12-31 …

已知函数(1)求的极大值和极小值,并画出函数的草图(2)根据函数图象讨论方程的根的个数问题:①有且仅  2021-01-05 …