早教吧作业答案频道 -->数学-->
(2008•濮阳)如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=O和x=4时,y的值相等.直线y=4x-16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这
题目详情
(2008•濮阳)如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=O和x=4时,y的值相等.直线y=4x-16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M.
(1)求这条抛物线的解析式;
(2)P为线段OM上一点,过点P作PQ⊥x轴于点Q.若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;
(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值,并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;
(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值.

(1)求这条抛物线的解析式;
(2)P为线段OM上一点,过点P作PQ⊥x轴于点Q.若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;
(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值,并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;
(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值.

▼优质解答
答案和解析
(1)x=O和x=4时,y的值相等,即可得到函数的对称轴是x=2,把x=2和x=3分别代入直线y=4x-16就可以求出抛物线上的两个点的坐标,并且其中一点是顶点,利用待定系数法,设出函数的顶点式一般形式,就可以求出函数的解析式;
(2)根据待定系数法可以求出直线OM的解析式,设OQ的长为t,即P,Q的横坐标是t,把x=t代入直线OM的解析式,就可以求出P点的纵坐标,得到PQ的长,四边形PQCO的面积S=S△COQ+S△OPQ,很据三角形的面积公式就可以得到函数解析式;
(3)从图象可看出,随着点P由O→M运动,△COQ的面积与△OPQ的面积在不断增大,即S不断变大,显当然点P运动到点M时,S最值;
(4)在直角△OPQ中,根据勾股定理就可以求出点P的坐标.
【解析】
(1)∵当x=0和x=4时,y的值相等,
∴c=16a+4b+c,(1分)
∴b=-4a,
∴x=-
=-
=2
将x=3代入y=4x-16,得y=-4,
将x=2代入y=4x-16,得y=-8.(2分)
∴设抛物线的解析式为y=a(x-2)2-8
将点(3,-4)代入,得-4=a(x-2)2-8,
解得a=4.
∴抛物线y=4(x-2)2-8,即y=4x2-16x+8.(3分)
(2)设直线OM的解析式为y=kx,将点M(2,-8)代入,得k=-4,
∴y=-4x.(4分)
则点P(t,-4t),PQ=4t,而OC=8,OQ=t.
S=S△COQ+S△OPQ=
×8×t+
×t×4t=2t2+4t(5分)
t的取值范围为:0<t≤2(6分)
(3)随着点P的运动,四边形PQCO的面积S有最大值.
从图象可看出,随着点P由O→M运动,△COQ的面积与△OPQ的面积在不断增大,
即S不断变大,显然当点P运动到点M时,S值最大(7分)
此时t=2时,点Q在线段AB的中点上(8分)
因而S=
×2×8+
×2×8=16.
当t=2时,OC=MQ=8,OC∥MQ,
∴四边形PQCO是平行四边形.(9分)
(4)随着点P的运动,存在t=
,能满足PO=OC(10分)
设点P(t,-4t),PQ=4T,OQ=t.
由勾股定理,得OP2=(4t)2+t2=17t2.
∵PO=OC,
∴17t2=82,t1=
<2,t2=-
(不合题意)
∴当t=
时,PO=OC.(11分)
(2)根据待定系数法可以求出直线OM的解析式,设OQ的长为t,即P,Q的横坐标是t,把x=t代入直线OM的解析式,就可以求出P点的纵坐标,得到PQ的长,四边形PQCO的面积S=S△COQ+S△OPQ,很据三角形的面积公式就可以得到函数解析式;
(3)从图象可看出,随着点P由O→M运动,△COQ的面积与△OPQ的面积在不断增大,即S不断变大,显当然点P运动到点M时,S最值;
(4)在直角△OPQ中,根据勾股定理就可以求出点P的坐标.
【解析】
(1)∵当x=0和x=4时,y的值相等,
∴c=16a+4b+c,(1分)

∴b=-4a,
∴x=-


将x=3代入y=4x-16,得y=-4,
将x=2代入y=4x-16,得y=-8.(2分)
∴设抛物线的解析式为y=a(x-2)2-8
将点(3,-4)代入,得-4=a(x-2)2-8,
解得a=4.
∴抛物线y=4(x-2)2-8,即y=4x2-16x+8.(3分)
(2)设直线OM的解析式为y=kx,将点M(2,-8)代入,得k=-4,
∴y=-4x.(4分)
则点P(t,-4t),PQ=4t,而OC=8,OQ=t.
S=S△COQ+S△OPQ=


t的取值范围为:0<t≤2(6分)
(3)随着点P的运动,四边形PQCO的面积S有最大值.
从图象可看出,随着点P由O→M运动,△COQ的面积与△OPQ的面积在不断增大,
即S不断变大,显然当点P运动到点M时,S值最大(7分)
此时t=2时,点Q在线段AB的中点上(8分)
因而S=


当t=2时,OC=MQ=8,OC∥MQ,
∴四边形PQCO是平行四边形.(9分)
(4)随着点P的运动,存在t=

设点P(t,-4t),PQ=4T,OQ=t.
由勾股定理,得OP2=(4t)2+t2=17t2.
∵PO=OC,
∴17t2=82,t1=


∴当t=

看了 (2008•濮阳)如图,抛物...的网友还看了以下:
已知椭圆x2/4+y2/2=1(四分之x方+二分之y方=1),点A、B分别是它的左右定点,一条垂直 2020-04-27 …
一道一次函数数学题已知直线L1与直线L2平行,且与直线L2相交于点M(1,4).两直线分别于x轴交 2020-05-16 …
①两点之间,最短.确定一条直线,经过一点有且只有条直线与已知直线垂直.直线外一点与直线上各点连结的 2020-06-04 …
在同一平面内,过一点可能有两条以上的直线与已知直线平行吗?任意画一条直线a,在直线外取点P,并过点 2020-06-06 …
几何求证在圆的直径上任取一点,从该点向直径两侧引两条射线,如果两条射线分别与直径成的夹角相等,求证 2020-07-25 …
初一平行数学题已知直线a‖b,直线a,b上分别有A,B两点,直线c与直线a,b分别交与CD两点,有 2020-08-02 …
已知抛物线C:y2=4x的焦点F,过F的直线l与C相交于A,B两点,若AB的垂直平分线l.已知抛物 2020-08-03 …
如何,直线y=2x十3与x轴相交于点A,与y轴交于点p.(1)求A,B两点的坐标过B点作直线B如何, 2020-11-04 …
2011四川高考数学(理)倒数第二题中的P异于A,椭圆有两顶点A(-1,0)、B(1,0),过其焦点 2021-01-10 …
1过点P(-1,2)的直线l与x轴和y轴分别交与A,B两点.若点P恰为线段AB的中点,求直线l的斜率 2021-01-10 …