早教吧作业答案频道 -->数学-->
(2008•濮阳)如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=O和x=4时,y的值相等.直线y=4x-16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这
题目详情
(2008•濮阳)如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=O和x=4时,y的值相等.直线y=4x-16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M.
(1)求这条抛物线的解析式;
(2)P为线段OM上一点,过点P作PQ⊥x轴于点Q.若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;
(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值,并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;
(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值.

(1)求这条抛物线的解析式;
(2)P为线段OM上一点,过点P作PQ⊥x轴于点Q.若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;
(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值,并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;
(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值.

▼优质解答
答案和解析
(1)x=O和x=4时,y的值相等,即可得到函数的对称轴是x=2,把x=2和x=3分别代入直线y=4x-16就可以求出抛物线上的两个点的坐标,并且其中一点是顶点,利用待定系数法,设出函数的顶点式一般形式,就可以求出函数的解析式;
(2)根据待定系数法可以求出直线OM的解析式,设OQ的长为t,即P,Q的横坐标是t,把x=t代入直线OM的解析式,就可以求出P点的纵坐标,得到PQ的长,四边形PQCO的面积S=S△COQ+S△OPQ,很据三角形的面积公式就可以得到函数解析式;
(3)从图象可看出,随着点P由O→M运动,△COQ的面积与△OPQ的面积在不断增大,即S不断变大,显当然点P运动到点M时,S最值;
(4)在直角△OPQ中,根据勾股定理就可以求出点P的坐标.
【解析】
(1)∵当x=0和x=4时,y的值相等,
∴c=16a+4b+c,(1分)
∴b=-4a,
∴x=-
=-
=2
将x=3代入y=4x-16,得y=-4,
将x=2代入y=4x-16,得y=-8.(2分)
∴设抛物线的解析式为y=a(x-2)2-8
将点(3,-4)代入,得-4=a(x-2)2-8,
解得a=4.
∴抛物线y=4(x-2)2-8,即y=4x2-16x+8.(3分)
(2)设直线OM的解析式为y=kx,将点M(2,-8)代入,得k=-4,
∴y=-4x.(4分)
则点P(t,-4t),PQ=4t,而OC=8,OQ=t.
S=S△COQ+S△OPQ=
×8×t+
×t×4t=2t2+4t(5分)
t的取值范围为:0<t≤2(6分)
(3)随着点P的运动,四边形PQCO的面积S有最大值.
从图象可看出,随着点P由O→M运动,△COQ的面积与△OPQ的面积在不断增大,
即S不断变大,显然当点P运动到点M时,S值最大(7分)
此时t=2时,点Q在线段AB的中点上(8分)
因而S=
×2×8+
×2×8=16.
当t=2时,OC=MQ=8,OC∥MQ,
∴四边形PQCO是平行四边形.(9分)
(4)随着点P的运动,存在t=
,能满足PO=OC(10分)
设点P(t,-4t),PQ=4T,OQ=t.
由勾股定理,得OP2=(4t)2+t2=17t2.
∵PO=OC,
∴17t2=82,t1=
<2,t2=-
(不合题意)
∴当t=
时,PO=OC.(11分)
(2)根据待定系数法可以求出直线OM的解析式,设OQ的长为t,即P,Q的横坐标是t,把x=t代入直线OM的解析式,就可以求出P点的纵坐标,得到PQ的长,四边形PQCO的面积S=S△COQ+S△OPQ,很据三角形的面积公式就可以得到函数解析式;
(3)从图象可看出,随着点P由O→M运动,△COQ的面积与△OPQ的面积在不断增大,即S不断变大,显当然点P运动到点M时,S最值;
(4)在直角△OPQ中,根据勾股定理就可以求出点P的坐标.
【解析】
(1)∵当x=0和x=4时,y的值相等,
∴c=16a+4b+c,(1分)

∴b=-4a,
∴x=-


将x=3代入y=4x-16,得y=-4,
将x=2代入y=4x-16,得y=-8.(2分)
∴设抛物线的解析式为y=a(x-2)2-8
将点(3,-4)代入,得-4=a(x-2)2-8,
解得a=4.
∴抛物线y=4(x-2)2-8,即y=4x2-16x+8.(3分)
(2)设直线OM的解析式为y=kx,将点M(2,-8)代入,得k=-4,
∴y=-4x.(4分)
则点P(t,-4t),PQ=4t,而OC=8,OQ=t.
S=S△COQ+S△OPQ=


t的取值范围为:0<t≤2(6分)
(3)随着点P的运动,四边形PQCO的面积S有最大值.
从图象可看出,随着点P由O→M运动,△COQ的面积与△OPQ的面积在不断增大,
即S不断变大,显然当点P运动到点M时,S值最大(7分)
此时t=2时,点Q在线段AB的中点上(8分)
因而S=


当t=2时,OC=MQ=8,OC∥MQ,
∴四边形PQCO是平行四边形.(9分)
(4)随着点P的运动,存在t=

设点P(t,-4t),PQ=4T,OQ=t.
由勾股定理,得OP2=(4t)2+t2=17t2.
∵PO=OC,
∴17t2=82,t1=


∴当t=

看了 (2008•濮阳)如图,抛物...的网友还看了以下:
已知f(x)={1,x大于等于0.{-1,x小于0,球不等式xf(x)+x小于等于2的解集 2020-03-31 …
已知函数fx=|log4^x-1|-2|x|小于等于11/(1+x^1/3)|x|大于1则ff27 2020-05-13 …
初二数学分式题(全答对追加!)1.若x/y=2,则x²-xy/xy+y²=2.若1/x²-2x+m 2020-05-17 …
f(x)=kx^3-3(k+1)x^2-k^2+1(k大于0)1)若f(x)的单调减区间为(0,4 2020-06-02 …
已知f(x)的定义域为[1,4],求f(x+2)的定义域.答案如下:令t=x+2.∵f(x)的定义 2020-07-25 …
1.x趋向于0,1/(x^2)*sin(1/x)是a.无穷小量b.无穷大量c.有界量非无穷小量d. 2020-07-31 …
1/(1+x)=1-x+x^2-x^3+……+(-1)^nx^n两边积分得ln(1+x)=x-x^2 2020-11-24 …
下列函数在x=0处是否连续1、f(x)={xsin1/x,x不等于0{0,x=02、f(x)=[si 2020-12-08 …
关于f(1-x)=f(1+x)为描述函数图像关于x=1对称的推导是f(a-x)=f(a+x)这个,可 2020-12-28 …
函数极限剪短点的问题,怎样分类.进来看看都,会的说一下就行题1,y=lim(1/1-x)-(3/1- 2021-01-14 …