早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知f(x)是定义在R上且以4为周期的奇函数,当x∈(0,2)时,f(x)=ln(x2-x+b),若函数f(x)在区间[-2,2]上的零点个数为5,则实数b的取值范围是14<b≤1或b=5414<b≤1或b=54.

题目详情
已知f(x)是定义在R上且以4为周期的奇函数,当x∈(0,2)时,f(x)=ln(x2-x+b),若函数f(x)在区间[-2,2]上的零点个数为5,则实数b的取值范围是
1
4
<b≤1或b=
5
4
1
4
<b≤1或b=
5
4
▼优质解答
答案和解析
∵f(x)是定义在R上的奇函数,
故f(0)=0,即0是函数f(x)的零点,
又由f(x)是定义在R上且以4为周期的周期函数,
故f(-2)=f(2),且f(-2)=-f(2),
故f(-2)=f(2)=0,
即±2也是函数f(x)的零点,
若函数f(x)在区间[-2,2]上的零点个数为5,
则当x∈(0,2)时,f(x)=ln(x2-x+b),
故当x∈(0,2)时,x2-x+b>0恒成立,
且x2-x+b=1在(0,2)有一解,
1-4b<0
(
1
2
)2-
1
2
+b=1
1-4b<0
1-1+b≤1
4-2+b≥1

解得:
1
4
<b≤1或b=
5
4

故答案为:
1
4
<b≤1或b=
5
4