早教吧作业答案频道 -->其他-->
(2013•凤阳县模拟)把Rt△ABC如图放置在平面直角坐标系中,点A在y轴上,点B在x轴上,∠ABC=90°,若点A的坐标为(0,4),AO=2OB,且∠OAB=∠BAC.(1)求过点A、B、C三点的抛物线解析式;(2
题目详情
(2013•凤阳县模拟)把Rt△ABC如图放置在平面直角坐标系中,点A在y轴上,点B在x轴上,∠ABC=90°,若点A的坐标为(0,4),AO=2OB,且∠OAB=∠BAC.
(1)求过点A、B、C三点的抛物线解析式;
(2)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A.求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长;
(3)在AC上是否存在点Q,使得△QBC为等腰三角形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.

(1)求过点A、B、C三点的抛物线解析式;
(2)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A.求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长;
(3)在AC上是否存在点Q,使得△QBC为等腰三角形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.

▼优质解答
答案和解析
(1)过点C作CD⊥x轴于D.
∵A(0,4),AO=2BO,
∴OB=2,
∴B(2,0),
∵∠ABC=∠AOB=90°,∠OAB=∠BAC
∴△ABC∽△AOB
∴
=
,
∴
=
=2,
∵∠OBA+∠CBD=90°,∠OBA+∠OAB=90°
∴∠OAB=∠CBD
∵∠CDB=∠AOB=90°
∴△AOB∽△BDC
∴
=
=
,
∴BD=2,DC=1
∴C(4,1),
∵抛物线过点A(0,4),
∴设抛物线解析式为:y=ax2+bx+4,
又∵抛物线过B(2,0),C(4,1),
∴
解得:a=
,b=-
,
∴抛物线解析式为:y=
x2-
x+4;
(2)由(1)中求出的抛物线的解析式可知,抛物线的对称轴为:直线x=-
=
,
作A关于直线x=
的对称点A′,则A′(
,4),
作M关于x轴的对称点M′,则M′(0,-2),
连接A′M′交x轴于点E,交直线x=
于点F,
则此时点P经过的路线最短,
由对称性得:ME+FE+FA=A′M′,
又∵A′M′=
∵A(0,4),AO=2BO,
∴OB=2,
∴B(2,0),

∵∠ABC=∠AOB=90°,∠OAB=∠BAC
∴△ABC∽△AOB
∴
AB |
AO |
BC |
BO |
∴
AB |
BC |
AO |
BO |
∵∠OBA+∠CBD=90°,∠OBA+∠OAB=90°
∴∠OAB=∠CBD
∵∠CDB=∠AOB=90°
∴△AOB∽△BDC
∴
AB |
BC |
AO |
BD |
OB |
DC |
∴BD=2,DC=1
∴C(4,1),
∵抛物线过点A(0,4),
∴设抛物线解析式为:y=ax2+bx+4,
又∵抛物线过B(2,0),C(4,1),
∴
|
5 |
8 |
13 |
4 |
∴抛物线解析式为:y=
5 |
8 |
13 |
4 |
(2)由(1)中求出的抛物线的解析式可知,抛物线的对称轴为:直线x=-
b |
2a |
13 |
5 |
作A关于直线x=
13 |
5 |
26 |
5 |
作M关于x轴的对称点M′,则M′(0,-2),
连接A′M′交x轴于点E,交直线x=
13 |
5 |

则此时点P经过的路线最短,
由对称性得:ME+FE+FA=A′M′,
又∵A′M′=
作业帮用户
2017-09-19
|
看了 (2013•凤阳县模拟)把R...的网友还看了以下:
土地覆盖是植被、土壤、河湖、沼泽及各种建筑物等地表诸要素的综合体。图中0点为l980年中国土地覆盖 2020-04-07 …
一道必修2的物理题圆周运动的长度为L的轻质细杆OA,A端有一质量为mkg的小球,小球以0点为圆心竖 2020-05-23 …
如图1是一种古老的捕鱼方法,扳罾,在《楚辞》中“罾何为兮木上“的记载,因此可以粗略判断这种中国特有 2020-06-11 …
循环小数的后面打几点?如:5.56121212……比如0.333333…为什么有些后面有6点,有些 2020-06-27 …
土地覆盖是植被、土壤、河湖、沼泽及各种建筑物等地表诸要素的综合体。右图中0点为l980年中国土地覆 2020-07-09 …
热力学温标K,以-273.15摄氏度为0点,为什么1K=1摄氏度,且0点不同,热力学温标K和热力学 2020-07-19 …
不过坐标原点的抛物线方程该怎么设呢?比如焦点为(4,0),准线为x=6的抛物线方程该是多少呢? 2020-07-31 …
在一个平面直角坐标系中,已知一点A(x1,x2)做这个点关于y=kx=b对称的点B(x2,y2)的 2020-08-01 …
已知一个几何体的三视图如图所示.(1)求此几何体的表面积;(2)在如图的正视图中,如果点为所在线段 2020-08-01 …
点到面上的投影坐标计算公式,例平面为x+2y+2z-6=0,点为(0,0,0) 2020-10-31 …