早教吧作业答案频道 -->数学-->
探究问题:(1)阅读理解析①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离;②如图(B
题目详情
探究问题:
(1)阅读理【解析】
①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离;
②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB•CD+BC•DA=AC•BD.此为托勒密定理;

(2)知识迁移:
①请你利用托勒密定理,解决如下问题:
如图(C),已知点P为等边△ABC外接圆的
上任意一点.求证:PB+PC=PA;
②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:
第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;
第二步:在
上任取一点P′,连接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+______;
第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段______的长度即为△ABC的费马距离.

(3)知识应用:
2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.
已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.

(1)阅读理【解析】
①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离;
②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB•CD+BC•DA=AC•BD.此为托勒密定理;

(2)知识迁移:
①请你利用托勒密定理,解决如下问题:
如图(C),已知点P为等边△ABC外接圆的

②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:
第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;
第二步:在

第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段______的长度即为△ABC的费马距离.

(3)知识应用:
2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.
已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.

▼优质解答
答案和解析
(2)知识迁移①问,只需按照题意套用托勒密定理,再利用等边三角形三边相等,将所得等式两边都除以等边三角形的边长,即可获证. ②问,借用①问结论,及线段的性质“两点之间线段最短”数学容易获解.
(3)知识应用,在(2)的基础上先画出图形,再求解.
(2)①证明:由托勒密定理可知PB•AC+PC•AB=PA•BC
∵△ABC是等边三角形
∴AB=AC=BC,
∴PB+PC=PA,
②P′D、AD,
(3)【解析】
如图,以BC为边长在△ABC的外部作等边△BCD,连接AD,则知线段AD的长即为△ABC
的费马距离.
∵△BCD为等边三角形,BC=4,
∴∠CBD=60°,BD=BC=4,
∵∠ABC=30°,∴∠ABD=90°,
在Rt△ABD中,∵AB=3,BD=4,
∴AD=
=
=5(km),
∴从水井P到三村庄A、B、C所铺设的输水管总长度的最小值为5km.
(3)知识应用,在(2)的基础上先画出图形,再求解.

∵△ABC是等边三角形
∴AB=AC=BC,
∴PB+PC=PA,
②P′D、AD,
(3)【解析】
如图,以BC为边长在△ABC的外部作等边△BCD,连接AD,则知线段AD的长即为△ABC

∵△BCD为等边三角形,BC=4,
∴∠CBD=60°,BD=BC=4,
∵∠ABC=30°,∴∠ABD=90°,
在Rt△ABD中,∵AB=3,BD=4,
∴AD=


∴从水井P到三村庄A、B、C所铺设的输水管总长度的最小值为5km.
看了 探究问题:(1)阅读理解析①...的网友还看了以下:
如图,某海滨浴场的海岸线可以看作直线,如图,1号救生员在岸边的点A看到海中的点B有人求救,便立即向 2020-05-16 …
平面直角坐标系中求一个到指定两点为指定距离的点最快方法例如一个点为A(0,0),另一个点B(2,3 2020-05-17 …
如图,在△ABC中,AC⊥BC,AC=12,BC=16,AB=20,试求:点A到直线BC的距离.点 2020-06-27 …
甲、乙两人沿圆形跑道匀速跑步,他们分别从直径AB两端同时相向出发,第一次相遇时离点A(弧形距离)80 2020-11-30 …
下列有关孟德尔分离定律的叙述错误的是()A.F2中出现3:1的性状分离比彻底否定了融合遗传这一观点B 2020-12-01 …
如图所示,竖直绝缘墙壁上有一个固定的质点A,在A点正上方的O点用绝缘丝线悬挂另一质点B,OA=OB, 2020-12-05 …
红黑两只蚂蚁同时从A点出发,沿着长方形的长和宽两边爬行,结果在点c相遇,点C离点B的距离为2厘米,已 2020-12-14 …
如图所示,施工队在沿AC方向开山修路,为了加快施工进度,要在小山的另一边点E同时施工,从AC上的一点 2020-12-25 …
初一的数学题沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B,取∠A 2020-12-25 …
如图所示,施工队在沿AC方向开山修路,为了加快施工进度,要在小山的另一边点E同时施工,从AC上的一点 2021-01-08 …