早教吧作业答案频道 -->数学-->
求答案:已知数列{an}满足a1=1,a2=3,若数列{an·an+1}是公比为2的等比数列,求通项an
题目详情
求答案:已知数列{an}满足a1=1,a2=3,若数列{an·an+1}是公比为2的等比数列,求通项an
▼优质解答
答案和解析
{a(n)a(n+1)}为首项为 a(1)a(2) = 3,公比为2的等比数列.
a(n)a(n+1) = 3*2^(n-1).
a(2n-1)a(2n) = 3*2^(2n-1-1) = 3*4^(n-1).
a(2n)a(2n+1) = 3*2^(2n-1) = 6*4^(n-1).
2 = [6*4^(n-1)]/[3*4^(n-1)] = [a(2n)a(2n+1)]/[a(2n-1)a(2n)] = a(2n+1)/a(2n-1),
a(2n+1) = 2a(2n-1).
{a(2n-1)}是首项为a(1)=1,公比为2的等比数列.
a(2n-1)=2^(n-1).
a(2n) = [3*4^(n-1)]/a(2n-1) = [3*4^(n-1)]/2^(n-1) = 3*2^(n-1).
{a(n)}的通项公式为,
a(2n-1)= 2^(n-1),
a(2n) = 3*2^(n-1).
a(n)a(n+1) = 3*2^(n-1).
a(2n-1)a(2n) = 3*2^(2n-1-1) = 3*4^(n-1).
a(2n)a(2n+1) = 3*2^(2n-1) = 6*4^(n-1).
2 = [6*4^(n-1)]/[3*4^(n-1)] = [a(2n)a(2n+1)]/[a(2n-1)a(2n)] = a(2n+1)/a(2n-1),
a(2n+1) = 2a(2n-1).
{a(2n-1)}是首项为a(1)=1,公比为2的等比数列.
a(2n-1)=2^(n-1).
a(2n) = [3*4^(n-1)]/a(2n-1) = [3*4^(n-1)]/2^(n-1) = 3*2^(n-1).
{a(n)}的通项公式为,
a(2n-1)= 2^(n-1),
a(2n) = 3*2^(n-1).
看了 求答案:已知数列{an}满足...的网友还看了以下:
数列{an}是等差数列,已知a1=19,d=-2,Sn为{an}的前n项和①求通项an及Sn②若{ 2020-04-27 …
急,关于等比数列求通项问题.已知数列{an}前n项和为Sn,又Sn=2an-2,求{an}通项公式 2020-05-13 …
已知等差数列An中.公差D不等于零.A2=1,A2A3A6衣次是一等比数列的前三项.求等差数列通相 2020-05-17 …
等比数列的几个题1.已知等比数列前4项和为10,且a2,a3,a7成等比数列求数列{an}的通项公 2020-05-22 …
1)已知数列{an}满足a1=1,n≥2时,an-1-an=2an-1an,求通项公式an2)已知 2020-06-11 …
8.已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列.求数列{a8.已知等差数列{ 2020-07-09 …
已知数列{an}的前N项和为Sna1=1/4Sn=Sn-1+an-1+1/2数列{bn}满足3bn 2020-07-30 …
关于数列的问题已知{an}是首项为19,公差为-2的等差数列,Sn为an的前n项和(1)求通项an 2020-07-30 …
等比数列,求通项公式,((在线等待))!(1)已知,A1=1,An-A(n-1)=1/n(n-1) 2020-08-02 …
已知数列[a]是等差数列,其前n项和为Sn,数列[bn]是等比数列,且a1=b1=2,a4+b4=2 2020-10-31 …