早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,平行四边形ABCD中,AB>AD,AE,BE,CM,DM分别为∠DAB,∠ABC,∠BCD,∠CDA的平分线,AE与DM相交于点F,BE与CM相交于点N,连接EM,若平行四边形ABCD的周长为42,FM=3,EF=4,则AB的长为(

题目详情

如图,平行四边形ABCD中,AB>AD,AE,BE,CM,DM分别为∠DAB,∠ABC,∠BCD,∠CDA的平分线,AE与DM相交于点F,BE与CM相交于点N,连接EM,若平行四边形ABCD的周长为42,FM=3,EF=4,则AB的长为(  )
作业帮

A. 12

B. 13

C. 14

D. 15

▼优质解答
答案和解析
∵AE为∠DAB的平分线,
∴∠DAE=∠EAB=
1
2
∠DAB,
同理:∠ABE=∠CBE=
1
2
∠ABC,
∠BCM=∠DCM=
1
2
∠BCD,
∠CDM=∠ADM=
1
2
∠ADC.
∵四边形ABCD是平行四边形,
∴∠DAB=∠BCD,∠ABC=∠ADC,AD=BC.
∴∠DAF=∠BCN,∠ADF=∠CBN.
在△ADF和△CBN中,
∠DAF=∠BCN
AD=CB
∠ADF=∠CBN

∴△ADF≌△CBN(ASA).
∴DF=BN.
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAB+∠ABC=180°.
∴∠EAB+∠EBA=90°.
∴∠AEB=90°.
同理可得:∠AFD=∠DMC=90°.
∴∠EFM=90°.
∵FM=3,EF=4,
∴ME=
32+42
=5(cm).
∵∠EFM=∠FMN=∠FEN=90°.
∴四边形EFMN是矩形.
∴EN=FM=3.
∵∠DAF=∠EAB,∠AFD=∠AEB,
∴△AFD∽△AEB.
DF
BE
=
AF
AE

DF
3+DF
=
AF
4+AF

∴4DF=3AF.
设DF=3k,则AF=4k.
∵∠AFD=90°,
∴AD=5k.
∵∠AEB=90°,AE=4(k+1),BE=3(k+1),
∴AB=5(k+1).
∵2(AB+AD)=42,
∴AB+AD=21.
∴5(k+1)+5k=21.
∴k=1.6.
∴AB=13(cm).
故选B.