早教吧作业答案频道 -->其他-->
(2009•怀柔区一模)如图1,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时(
题目详情
(2009•怀柔区一模)如图1,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:
(1)如果AB=AC,∠BAC=90°.
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD之间的位置关系为______,数量关系为______;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,为什么?

(2)①如果AB=AC,∠BAC≠90°,点D在射线BC上运动.在图4中同样作出正方形ADEF,你发现(1)问中的结论是否成立?不用说明理由;
②如果∠BAC=90°,AB≠AC,点D在射线BC上运动.在图5中同样作出正方形ADEF,你发现(1)问中的结论是否成立?不用说明理由;

(3)要使(1)问中CF⊥BC的结论成立,试探究:△ABC应满足的一个条件,(点C、F重合除外)画出相应图形(画图不写作法),并说明理由;
(4)在(3)问的条件下,设正方形ADEF的边DE与线段CF相交于点P,设AC=2
,BC=
,求线段CP长的最大值.
(1)如果AB=AC,∠BAC=90°.
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD之间的位置关系为______,数量关系为______;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,为什么?

(2)①如果AB=AC,∠BAC≠90°,点D在射线BC上运动.在图4中同样作出正方形ADEF,你发现(1)问中的结论是否成立?不用说明理由;
②如果∠BAC=90°,AB≠AC,点D在射线BC上运动.在图5中同样作出正方形ADEF,你发现(1)问中的结论是否成立?不用说明理由;

(3)要使(1)问中CF⊥BC的结论成立,试探究:△ABC应满足的一个条件,(点C、F重合除外)画出相应图形(画图不写作法),并说明理由;
(4)在(3)问的条件下,设正方形ADEF的边DE与线段CF相交于点P,设AC=2
| 2 |
| 3 |
| 2 |
▼优质解答
答案和解析
(1)①CF与BD位置关系是垂直、数量关系是相等;(1分)
②当点D在BC的延长线上时①的结论仍成立(如图3).
由正方形ADEF得AD=AF,∠DAF=90°,
∵∠BAC=90°,
∴∠DAF=∠BAC,
∴∠DAB=∠FAC,
又AB=AC,
∴△DAB≌△FAC,
∴CF=BD,
∠ACF=∠ABD.
∵∠BAC=90°,AB=AC,
∴∠ABC=45°,∴∠ACF=45°,
∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(3分)
(2)①画出图形(如图4),判断:(1)中的结论不成立.
②画出图形(如图5),判断:(1)中的结论不成立.(4分)
(3)当∠BCA=45°时,CF⊥BD(如图6).
理由是:过点A作AG⊥AC交BC于点G,
∴AC=AG.
∵∠BCA=45°,
∴∠AGD=45°,
∴△GAD≌△CAF
∴∠ACF=∠AGD=45°.
∠BCF=∠ACB+∠ACF=90°
即CF⊥BD.(5分)
(4)当具备∠BCA=45°时,
过点A作AQ⊥BC交CB的延长线于点Q,(如图7),
∵DE与CF交于点P时,此时点D位于线段CQ上,
∵∠BCA=45°,AC=2
,
∴由勾股定理可求得AQ=CQ=2.
设CD=x,∴DQ=2-x,
∵∠ADB+∠ADE+∠PDC=180°
且∠ADE=90°,
∴∠ADQ+∠PDC=90°,
又∵在直角△PCD中,∠PDC+∠DPC=90°
∴∠ADQ=∠DPC,
∵∠AQD=∠DCP=90°
∴△AQD∽△DCP,
∴
=
,∴
=
.
∴CP=-
x2+x=-
(x-1)2+
.(7分)
∵0<x≤
,
∴当x=1时,CP有最大值
.(8分)
②当点D在BC的延长线上时①的结论仍成立(如图3).
由正方形ADEF得AD=AF,∠DAF=90°,
∵∠BAC=90°,
∴∠DAF=∠BAC,
∴∠DAB=∠FAC,
又AB=AC,
∴△DAB≌△FAC,

∴CF=BD,
∠ACF=∠ABD.
∵∠BAC=90°,AB=AC,
∴∠ABC=45°,∴∠ACF=45°,
∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(3分)
(2)①画出图形(如图4),判断:(1)中的结论不成立.

②画出图形(如图5),判断:(1)中的结论不成立.(4分)
(3)当∠BCA=45°时,CF⊥BD(如图6).
理由是:过点A作AG⊥AC交BC于点G,
∴AC=AG.
∵∠BCA=45°,
∴∠AGD=45°,

∴△GAD≌△CAF
∴∠ACF=∠AGD=45°.
∠BCF=∠ACB+∠ACF=90°
即CF⊥BD.(5分)
(4)当具备∠BCA=45°时,
过点A作AQ⊥BC交CB的延长线于点Q,(如图7),
∵DE与CF交于点P时,此时点D位于线段CQ上,
∵∠BCA=45°,AC=2
| 2 |

∴由勾股定理可求得AQ=CQ=2.
设CD=x,∴DQ=2-x,
∵∠ADB+∠ADE+∠PDC=180°
且∠ADE=90°,
∴∠ADQ+∠PDC=90°,
又∵在直角△PCD中,∠PDC+∠DPC=90°
∴∠ADQ=∠DPC,
∵∠AQD=∠DCP=90°
∴△AQD∽△DCP,
∴
| CP |
| DQ |
| CD |
| AQ |
| CP |
| 2−x |
| x |
| 2 |
∴CP=-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∵0<x≤
| 3 |
| 2 |
∴当x=1时,CP有最大值
| 1 |
| 2 |
看了 (2009•怀柔区一模)如图...的网友还看了以下:
帮我解释6题A,D 2020-05-16 …
适合第一题A,D选项的一种情况?第2题的14种化合物是哪些(务必回答以上两个问题)?1两种粒子的质 2020-06-06 …
根据下列选项,请回答下列各题: A.D值 B.Z值 C.F值 D.F0值 E.丁值 在一定温度下杀死 2020-06-07 …
阅读下面材料,并完成材料后面的问题:在平面区域D中任取一点,记事件“该点落在其内部一个区域d内”为 2020-06-26 …
SQL计算列的问题我要在数据库中加入计算列,比如有a,b,c三列,计算列D=(a+b+c)/3,然 2020-07-10 …
专利权利要求书用词是否有问题.a是b、c、d中任意一种.a是b、c、d中至少一种.专利权利要求书用 2020-07-21 …
高二文科命题题已知abcd是实数若a≠b.且c≠d.则a+c≠b+d.对原命题逆命题否命题逆否命题 2020-07-22 …
图示意某区域水系分布,读图完成下列各题。小题1:图中四条河流干流最可能沿着断层发育起来的是A.a河B 2020-11-03 …
如图,△ABE和△DCF的顶点C,E,F,B在同一直线上,点A,点D在BC两侧,已知AB∥CD,AE 2020-11-03 …
答得多、对得多的有加分!我不得不感叹,现在的问题实在太让人郁闷了!英语一、A+B*C+D=eleve 2020-11-20 …