早教吧作业答案频道 -->数学-->
数列an的前n项和记为sn,已知a1=1an+1=(n分之n+2)乘sn(n=1,2,3,...)求证1.数列n分之sn是等比数列2.sn+1=4an
题目详情
数列an的前n项和记为sn,已知a1=1 an+1=(n分之n+2)乘sn(n=1,2,3,...)求证
1.数列n分之sn是等比数列
2.sn+1=4an
1.数列n分之sn是等比数列
2.sn+1=4an
▼优质解答
答案和解析
(1) 由已知有:
S[n+1] = S[n]+a[n+1] = S[n] + (n+2)/n *S[n]
==> S[n+1]/(n+1) = 2S[n]/n
==> { S[n+1]/(n+1)}/{S[n]/n} =2
可知 {S[n]/n} 为公比为2的等比数列;
(2 S[1] =a[1] =1,因此
S[n]/n = (S[1]/1)* 2^(n-1) = 2^(n-1)
==> S[n] = n*2^(n-1)
a[n] = S[n] - S[n-1] = n*2^(n-1) -(n-1)*2^(n-2) = (n+1)*2^(n-2)
S[n+1] = (n+1)*2^n = 4*(n+1)*2^(n-2)
==> S[n+1] = 4a[n]
结论得证
S[n+1] = S[n]+a[n+1] = S[n] + (n+2)/n *S[n]
==> S[n+1]/(n+1) = 2S[n]/n
==> { S[n+1]/(n+1)}/{S[n]/n} =2
可知 {S[n]/n} 为公比为2的等比数列;
(2 S[1] =a[1] =1,因此
S[n]/n = (S[1]/1)* 2^(n-1) = 2^(n-1)
==> S[n] = n*2^(n-1)
a[n] = S[n] - S[n-1] = n*2^(n-1) -(n-1)*2^(n-2) = (n+1)*2^(n-2)
S[n+1] = (n+1)*2^n = 4*(n+1)*2^(n-2)
==> S[n+1] = 4a[n]
结论得证
看了 数列an的前n项和记为sn,...的网友还看了以下:
数列{an}的前n项和记为Sn,已知a1=1,a(n+1)=n+2/nSn(n=1,2,3.),证 2020-04-05 …
an的前n项和Sn,a1=1,an+1=(n+2)/nSn,证数列Sn/n是等比数列和Sn+1=4 2020-04-06 …
数列{an}的前n项和记为Sn,已知a1=1,an+1=(n+2*)Sn/n(n=1,2,3…), 2020-04-06 …
数列﹛an﹜的前n项和为Sn,已知a1=1,an+1=(n+2)/nSn 证明 (1)数列{Sn/ 2020-04-06 …
数列{an}的前n项和记为Sn已知a1=1,an+1=n+2/n*Sn(n=1,2,3,…).求证 2020-04-06 …
等比数列前n项和在等比数列{an}中,已知三个量,请算出未知的1.a1=?q=-1/2n=7an= 2020-05-13 …
已知数列an中,a1=2,an+1=4an-3n+1,求证数列{an-n}为等比数列设{an}的前 2020-05-15 …
在各项均为正数的数列{an}中a1=三分之一且an+1-an+4an+1an=0通项公式前n项和在 2020-07-30 …
在数列an中,a1=2,a(n+1)=4an-3n+1,求证数列a(n)-n是等比数列,用待定系数 2020-08-03 …
(2011•南充二模)已知数列{an}满足:a1=1,an+1=12an+n2n+1(n∈N*).( 2020-11-12 …