早教吧作业答案频道 -->数学-->
数列{an}的前n项和记为Sn,已知a1=1,a(n+1)=n+2/nSn(n=1,2,3.),证明(1)数列{Sn/n}是等比数列.(2)S(n+1)=4an
题目详情
▼优质解答
答案和解析
证明:
(1)
注意到:
a(n+1)=S(n+1)-S(n)
代入已知第二条式子得:
S(n+1)-S(n)=S(n)*(n+2)/n
nS(n+1)-nS(n)=S(n)*(n+2)
nS(n+1)=S(n)*(2n+2)
S(n+1)/(n+1)=S(n)/n*2
又S(1)/1=a(1)/1=1不等于0
所以{S(n)/n}是等比数列
(2)
由(1)知,
{S(n)/n}是以1为首项,2为公比的等比数列.
所以S(n)/n=1*2^(n-1)=2^(n-1)
即S(n)=n*2^(n-1) (*)
代入a(n+1)=S(n)*(n+2)/n得
a(n+1)=(n+2)*2^(n-1) (n属于N)
即a(n)=(n+1)*2^(n-2) (n属于N且n>1)
又当n=1时上式也成立
所以a(n)=(n+1)*2^(n-2) (n属于N)
由(*)式得:
S(n+1)=(n+1)*2^n
=(n+1)*2^(n-2)*2^2
=(n+1)*2^(n-2)*4
对比以上两式可知:S(n+1)=4*a(n)
(1)
注意到:
a(n+1)=S(n+1)-S(n)
代入已知第二条式子得:
S(n+1)-S(n)=S(n)*(n+2)/n
nS(n+1)-nS(n)=S(n)*(n+2)
nS(n+1)=S(n)*(2n+2)
S(n+1)/(n+1)=S(n)/n*2
又S(1)/1=a(1)/1=1不等于0
所以{S(n)/n}是等比数列
(2)
由(1)知,
{S(n)/n}是以1为首项,2为公比的等比数列.
所以S(n)/n=1*2^(n-1)=2^(n-1)
即S(n)=n*2^(n-1) (*)
代入a(n+1)=S(n)*(n+2)/n得
a(n+1)=(n+2)*2^(n-1) (n属于N)
即a(n)=(n+1)*2^(n-2) (n属于N且n>1)
又当n=1时上式也成立
所以a(n)=(n+1)*2^(n-2) (n属于N)
由(*)式得:
S(n+1)=(n+1)*2^n
=(n+1)*2^(n-2)*2^2
=(n+1)*2^(n-2)*4
对比以上两式可知:S(n+1)=4*a(n)
看了 数列{an}的前n项和记为S...的网友还看了以下:
已知方程组ax+y=b cx+y=d的解是x=1、y=-2,已知a、b、c、d都是常数,且a不等于 2020-05-16 …
1.已知a+a分之1=3,则代数式(a+a分之1)+3a+5+a分之3的值是多少?2.已知a、b互 2020-06-10 …
1:若x^2+y^2-4x+6y+13=0,则(x^2+2x)/(x^2-3y^2)=?2:已知a 2020-06-11 …
两数和的平方求值(1)已知a+b=6,a-b=2,求a^2+b^2的值(2)已知a(a-1)-(a 2020-06-14 …
1已知x,y,z为实数,且满足:x+2y-z=6,x-y+2z=3求:x^2+y^2+z^2的最小 2020-07-21 …
已知:f(x)=x^2+(lga+2)x+lgb,f(-1)=-21.求证:a=10b2.当X∈R 2020-07-30 …
数学题目.1,已知a,b,x,y满足ax+by=3,ay-bx=5,则(a^2+b^2)(x^2+y 2020-10-31 …
做出下面的题1.已知有理数a,b满足a^2+4b^2-a+4b+5/4=0;那么,-ab的相反数是多 2020-11-01 …
初2数学~~1,已知|a+4|与b^2-2b+1互为相反数,把多项式(x^2+4y^2)-(axy+ 2020-11-20 …
已知a,bp的2013次方-cd+a+b/abcd+m的二次方互为相反数,c,d互为倒数,m的绝对值 2020-12-31 …