早教吧作业答案频道 -->其他-->
已知:将一副三角板(Rt△ABC和Rt△DEF)如图1摆放,点E、A、D、B在一条直线上,且D是AB的中点.将Rt△DEF绕点D顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE、AC相交于点M,直线
题目详情
已知:将一副三角板(Rt△ABC和Rt△DEF)如图1摆放,点E、A、D、B在一条直线上,且D是AB的中点.将Rt△DEF绕点D顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE、AC相交于点M,直线DF、BC相交于点N,分别过点M、N作直线AB的垂线,垂足为G、H.
(1)当α=30°时(如图2),求证:AG=DH;
(2)当α=60°时(如图3),(1)中的结论是否成立?请写出你的结论,并说明理由;
(3)当0°<α<90°时,(1)中的结论是否成立?请写出你的结论,并根据图④说明理由.

(1)当α=30°时(如图2),求证:AG=DH;
(2)当α=60°时(如图3),(1)中的结论是否成立?请写出你的结论,并说明理由;
(3)当0°<α<90°时,(1)中的结论是否成立?请写出你的结论,并根据图④说明理由.

▼优质解答
答案和解析
(1)∵α=30°,
∴∠ADM=30°,
∵∠A=30°,
∴∠ADM=∠A.
∴AM=DM.
又∵MG⊥AD于G,
∴AG=
AD.
∵∠CDB=180°-∠EDF-∠ADM=60°,∠B=60°,
∴△CDB是等边三角形.
又∵CH⊥DB于H,
∴DH=
DB.
∵在△ABC中,∠ACB=90°,∠A=30°,
∴BC=
AB.
∵BC=BD,
∴AD=DB.
∴AG=DH.
(2)结论成立.理由如下:
在△AMD与△DNB中,∠A=∠NDB=30°,AD=DB,∠MDA=∠B=60°,
∴△AMD≌△DNB,
∴AM=DN.
又∵在△AMG与△DNH中,∠A=∠NDB,∠MGA=∠NHD=90°,
∴△AMG≌△DNH.
∴AG=DH.
(3)方法一:结论成立.
Rt△AGM∽Rt△NHB,Rt△DGM∽Rt△NHD.
∵∠C=∠MDN=90°
∴C,D两点在以MN为直径的圆上,
∴C,M,D,N四点共圆
∴∠DNM=∠DCA=30°,
∴DN=
DM
又∵△DGM∽△NHD,
∴DH=
MG=AG.
方法二:
当0°<α<90°时,(1)中的结论成立.
在Rt△AMG中,∠A=30°,
∴∠AMG=60°=∠B.
又∠AGM=∠NHB=90°,
∴△AGM∽△NHB.
∴
①
∵∠MDG=α,
∴∠DMG=90°-α=∠NDH.
又∠MGD=∠DHN=90°,
∴Rt△MGD∽Rt△DHN.
∴
=
②
①×②,得.
=
由比例的性质,得
=
∵AD=DB,
∴AG=DH.
∴∠ADM=30°,
∵∠A=30°,
∴∠ADM=∠A.
∴AM=DM.
又∵MG⊥AD于G,
∴AG=

∵∠CDB=180°-∠EDF-∠ADM=60°,∠B=60°,
∴△CDB是等边三角形.
又∵CH⊥DB于H,
∴DH=

∵在△ABC中,∠ACB=90°,∠A=30°,
∴BC=

∵BC=BD,
∴AD=DB.
∴AG=DH.
(2)结论成立.理由如下:
在△AMD与△DNB中,∠A=∠NDB=30°,AD=DB,∠MDA=∠B=60°,
∴△AMD≌△DNB,
∴AM=DN.
又∵在△AMG与△DNH中,∠A=∠NDB,∠MGA=∠NHD=90°,
∴△AMG≌△DNH.
∴AG=DH.
(3)方法一:结论成立.
Rt△AGM∽Rt△NHB,Rt△DGM∽Rt△NHD.
∵∠C=∠MDN=90°
∴C,D两点在以MN为直径的圆上,
∴C,M,D,N四点共圆
∴∠DNM=∠DCA=30°,
∴DN=

又∵△DGM∽△NHD,
∴DH=

方法二:
当0°<α<90°时,(1)中的结论成立.
在Rt△AMG中,∠A=30°,
∴∠AMG=60°=∠B.
又∠AGM=∠NHB=90°,
∴△AGM∽△NHB.
∴

∵∠MDG=α,
∴∠DMG=90°-α=∠NDH.
又∠MGD=∠DHN=90°,
∴Rt△MGD∽Rt△DHN.
∴


①×②,得.


由比例的性质,得


∵AD=DB,
∴AG=DH.
看了 已知:将一副三角板(Rt△A...的网友还看了以下:
将正方形ABCD绕中心O顺时针旋转角α得到正方形A1B1C1D1.如图1所示.(1)当α=45°时 2020-05-16 …
已知一条曲线E在y轴右边,c上每一点到点f(1,0)的距离减去它到y轴距离的差都是1.(1)求曲线 2020-05-16 …
经过两点条直线,并且一条直线RT, 2020-05-21 …
如图,直线AB上有5个点A,B,C,D,E.1.图中一共有多少条射线?2.图中一共有多少条线段?3 2020-06-02 …
如图,小明站在C处看甲乙两楼楼顶上的点A和点E.C,E,A三点在同一条直线上,点B,E分别在点E, 2020-07-12 …
找规律!在线段AB上取一点C时,共有3条线段.在线段AB上取两点C、D时,有6条线段.在线段AB取 2020-07-13 …
已知平面中有n个点A,B,C三个点在一条直线上,A,D,F,E四个点也在一条直线上,除些之外,再没 2020-07-17 …
已知平面中有n个点A,B,C三个点在一条直线上,A,D,F,E四个点也在一条直线上,除些之外,再没 2020-07-17 …
(2014•唐山二模)已知抛物线E:y2=2px(p>0)的准线与x轴交于点M,过点M作圆C:(x- 2020-11-12 …
如图,已知在长方形纸条ABCD中,点G在边BC上,BG=2CG,将该纸条沿着过点G的直线翻折后,点C 2020-12-02 …