早教吧作业答案频道 -->数学-->
(2001•湖州)己知如图,正△ABC的边长为2,B,C在x轴的正半轴上,A在第一象限,直线经过A点,以BC为直径的⊙M交AB于E.(1)求A点的坐标;(2)求证:OE与⊙M相切;(3)试各写出一个顶
题目详情
(2001•湖州)己知如图,正△ABC的边长为2,B,C在x轴的正半轴上,A在第一象限,直线
经过A点,以BC为直径的⊙M交AB于E.
(1)求A点的坐标;
(2)求证:OE与⊙M相切;
(3)试各写出一个顶点在⊙M内、⊙M上、⊙M外,且经过B、C两点的抛物线的解析式.(只需写出解析式,不需书写求解过程).


(1)求A点的坐标;
(2)求证:OE与⊙M相切;
(3)试各写出一个顶点在⊙M内、⊙M上、⊙M外,且经过B、C两点的抛物线的解析式.(只需写出解析式,不需书写求解过程).

▼优质解答
答案和解析
(1)可在直角三角形BMA中,根据等边三角形的边长和∠ABC的正弦值求出AM的长即A点的纵坐标,然后代入直线的解析式中即可求出A点的坐标;
(2)连接ME,证ME⊥OE即可.易知三角形BEM是等边三角形,那么BE=BM,根据A点的坐标可求出B点的坐标,由此可证得AB=BM,因此证出了BE=
OM,由此得证;
(3)根据圆和抛物线的对称性可知:抛物线的对称轴必过M点,因此只需找出抛物线与圆的两个交点坐标,易知:(2,1)(2,-1).据此来求抛物线的解析式.
(1)【解析】
连接AM,在直角三角形ABM中,AB=2,∠ABC=60°,
因此BM=1,AM=
.
将y=
代入直线解析式中:
=
x+
-1,x=2
∴A(2,
)
(2)证明:由(1)可知:BM=1,
因此OB=OM-BM=2-1=1,
因此BM=OB
连接ME,∵MB=ME,∠ABC=60°,
∴△BME是等边三角形.
∴BE=OB=BM,
∴∠OME=∠EBM=∠BEM=60°,
∴∠OBE=120°,
∴∠EOB=∠BEO=30°,
∴∠OEM=90°,
∴OE是圆M的切线.
(3)【解析】
当顶点在圆上时,抛物线的解析式为y=±(x2-4x+3),其他两种情况答案不唯一.
(2)连接ME,证ME⊥OE即可.易知三角形BEM是等边三角形,那么BE=BM,根据A点的坐标可求出B点的坐标,由此可证得AB=BM,因此证出了BE=

(3)根据圆和抛物线的对称性可知:抛物线的对称轴必过M点,因此只需找出抛物线与圆的两个交点坐标,易知:(2,1)(2,-1).据此来求抛物线的解析式.

连接AM,在直角三角形ABM中,AB=2,∠ABC=60°,
因此BM=1,AM=

将y=




∴A(2,

(2)证明:由(1)可知:BM=1,
因此OB=OM-BM=2-1=1,
因此BM=OB
连接ME,∵MB=ME,∠ABC=60°,
∴△BME是等边三角形.
∴BE=OB=BM,
∴∠OME=∠EBM=∠BEM=60°,
∴∠OBE=120°,
∴∠EOB=∠BEO=30°,
∴∠OEM=90°,
∴OE是圆M的切线.
(3)【解析】
当顶点在圆上时,抛物线的解析式为y=±(x2-4x+3),其他两种情况答案不唯一.
看了 (2001•湖州)己知如图,...的网友还看了以下:
如果一次函数y=(a-3)x+b的图象不经过第三象限,则y=(b+3)x+6-a的图象不经过第几象 2020-04-08 …
1.函数y=(a-3)x+b+2经过点(-1,2)和(0,0)求a.b及函数解析式2.已知正比例函 2020-04-27 …
若关于x的分式方程(x-a)/(x-1) -3/x=1无解,则a=两边乘x(x-1)x(x-a)- 2020-05-15 …
几道关与函数的数学题,1.关于x的一次函数,y=(a-3)x+2a-5的图象与y轴的交点不在x轴下 2020-05-20 …
关于直线与方程1.已知直线L1:(a+3)x+4y=5-3a与L2:2x+(a+5)y=8,当a为 2020-05-21 …
急救T-T设函数f(x)=(a/3)x^3+bx^2+4cx+d的图像关于原点对称,f(x)的图像 2020-06-04 …
已知如图,A(3,0),B(0,4),C为x轴上一已知如图,A(3,0),B(0,4),C为x轴上 2020-07-26 …
如图,在平面直角坐标系中,以原点O为圆心,3为半径的半圆,直线AB:y=x+b与x轴交于点P(x, 2020-07-29 …
已知函数f(x)=log9(9^x+1)+kx(k∈R)是偶函数.求⑴求k的值;⑵若函数y=f(x 2020-08-01 …
化简:(1)x^2-4y^2/x-2y(2)a^3-2a/a(3)x^2-x/x-1(4)(x+2) 2020-11-01 …