早教吧作业答案频道 -->数学-->
已知数列an的前n项和为Sn,对任意n属于N*,都有an=2/3(Sn+n)(1)求证:数列{an+1}是等比数列,并求{an}的通项公式(2)求数列{Nan}的前n项和T
题目详情
已知数列an的前n项和为Sn,对任意n属于N*,都有an=2/3(Sn+n)
(1)求证:数列{an+1}是等比数列,并求{an}的通项公式 (2)求数列{Nan}的前n项和T
(1)求证:数列{an+1}是等比数列,并求{an}的通项公式 (2)求数列{Nan}的前n项和T
▼优质解答
答案和解析
(1)
an=2/3*(Sn+n),故
a(n-1)=2/3*(S(n-1)+(n-1)),二式相减,得
an-a(n-1)=2/3*(an+1),整理,得
1/3an=a(n-1)+2/3.两边同时加1/3,得
1/3an+1/3=a(n-1)+1,即
(an+1)/(a(n-1)+1)=3.故数列{an+1}是等比数列.
(2)
当n=1时,代入an=2/3(Sn+n),解之,得
a1=2,故
a1+1=3,an+1=3^n,故
{an}的通项公式为an=3^n-1
(3)
设数列{cn}的通项公式为cn=n*an+n,前n项和为R,则
cn=n*3^n.故
R=3+2*3^2+3*3^3+4*3^4+……+(n-1)*3^(n-1)+ n*3^n,又
3R= 3^2+2*3^3+3*3^4+……+(n-2)*3^(n-1)+(n-1)*3^n+n*3^(n+1),上式减下式,得
-2R=3+3^2+3^3+3^4+……+3^n-n*3^(n+1)
=3*(1-3^n)/(1-3) - n*3^(n+1),整理,得
R=(n/2-1/4)*3^(n+1)+3/4.又
R为{n*an+n}的前n项和,故
R=T+1+2+……+n=T+n*(n+1)/2,故
T=R-n*(n+1)/2
=(n/2-1/4)*3^(n+1)-n*(n+1)/2+3/4
an=2/3*(Sn+n),故
a(n-1)=2/3*(S(n-1)+(n-1)),二式相减,得
an-a(n-1)=2/3*(an+1),整理,得
1/3an=a(n-1)+2/3.两边同时加1/3,得
1/3an+1/3=a(n-1)+1,即
(an+1)/(a(n-1)+1)=3.故数列{an+1}是等比数列.
(2)
当n=1时,代入an=2/3(Sn+n),解之,得
a1=2,故
a1+1=3,an+1=3^n,故
{an}的通项公式为an=3^n-1
(3)
设数列{cn}的通项公式为cn=n*an+n,前n项和为R,则
cn=n*3^n.故
R=3+2*3^2+3*3^3+4*3^4+……+(n-1)*3^(n-1)+ n*3^n,又
3R= 3^2+2*3^3+3*3^4+……+(n-2)*3^(n-1)+(n-1)*3^n+n*3^(n+1),上式减下式,得
-2R=3+3^2+3^3+3^4+……+3^n-n*3^(n+1)
=3*(1-3^n)/(1-3) - n*3^(n+1),整理,得
R=(n/2-1/4)*3^(n+1)+3/4.又
R为{n*an+n}的前n项和,故
R=T+1+2+……+n=T+n*(n+1)/2,故
T=R-n*(n+1)/2
=(n/2-1/4)*3^(n+1)-n*(n+1)/2+3/4
看了 已知数列an的前n项和为Sn...的网友还看了以下:
1、公比小于一的等比数列是递减数列.常数列是公比为一的等比数列.这2句话对还是错?2、在等比数列中 2020-04-09 …
设函数f(x)=logax(a>0且a不等于1),数列{f(xn)}(n∈N)是首项为f(a^4) 2020-04-27 …
已知函数f(x)=x/(2*x+1),数列{an}满足a[1]=1/2,a[n+1]=f(a[n] 2020-05-13 …
数列极限的问题数列中第1,3,5,7,9……项构成一个子数列第2,4,6,8,10……项构成另一个 2020-05-13 …
1.在等比数列{an}中,A1=2,则这个等比数列的A(2n-1)=2.已知数列-1,a1,a2, 2020-05-14 …
若三个数1/a,1,1/c成等差数列,且三个数a^2,1,c^2成等比数列,则a+c/a^2+c^ 2020-05-15 …
三个数1/a,1,1/c成等差数列,而三个数a^2,1,c^2成等比数列,求(a+c)/(a^2+ 2020-05-15 …
等比数列的一些问题1.已知等比数列中a1=4根号2=4,则a11=2.若b是a和c的等比中项,则a 2020-05-17 …
等差数列{an}的前三项分别是a 1,2a,a 3,则该数列的通项公式为等差数列{an}的前三项分 2020-05-17 …
几道数列题二㊣小开(317052920) 14:49:021.正实数a,b,c成等差数列,c,a, 2020-05-17 …