早教吧作业答案频道 -->其他-->
(2014•苏州高新区二模)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则ADAB的值为1212.
题目详情

AD |
AB |
1 |
2 |
1 |
2 |
▼优质解答
答案和解析
∵矩形沿直线AC折叠,点B落在点E处,
∴∠BAC=∠EAC,AE=AB=CD,
∵矩形ABCD的对边AB∥CD,
∴∠DCA=∠BAC,
∴∠EAC=∠DCA,
设AE与CD相交于F,则AF=CF,
∴AE-AF=CD-CF,
即DF=EF,
∴
=
,
又∵∠AFC=∠EFD,
∴△ACF∽△EDF,
∴
=
=
,
设DF=3x,FC=5x,则AF=5x,
在Rt△ADF中,AD=
=
=4x,
又∵AB=CD=DF+FC=3x+5x=8x,
∴
=
=
.
故答案为:
.
∴∠BAC=∠EAC,AE=AB=CD,
∵矩形ABCD的对边AB∥CD,
∴∠DCA=∠BAC,
∴∠EAC=∠DCA,
设AE与CD相交于F,则AF=CF,
∴AE-AF=CD-CF,

即DF=EF,
∴
DF |
FC |
EF |
AF |
又∵∠AFC=∠EFD,
∴△ACF∽△EDF,
∴
DF |
FC |
DE |
AC |
3 |
5 |
设DF=3x,FC=5x,则AF=5x,
在Rt△ADF中,AD=
AF2−DF2 |
(5x)2−(3x)2 |
又∵AB=CD=DF+FC=3x+5x=8x,
∴
AD |
AB |
4x |
8x |
1 |
2 |
故答案为:
1 |
2 |
看了 (2014•苏州高新区二模)...的网友还看了以下:
已知,如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点;(问题见下面 2020-05-15 …
下列4个命题,正确命题的个数是()1.若a向量的模=b向量的模,则a向量=-b向量.2.若AB的向 2020-06-03 …
a模等于2,b模等于3,夹角为60度,求以2a+3b和5a-2b为平行四边形的面积 2020-06-06 …
试从正方体ABCD-A1B1C1D1的八个顶点中任取若干个连接后构成几下空间几何体,并用适当的符号 2020-07-09 …
四边形ADCDAB=DCAC=BDAD不等于BCAB平行DE(E在BC上)求证1四边形ABED平行 2020-07-23 …
(2014•六合区一模)如图,四边形ABCD为矩形,四边形AEDF为菱形.(1)求证:△ABE≌△ 2020-07-30 …
向量a的模=2向量b=4向量a,b之间的夹角60度.以向量a,b为邻边做平行四边形.则四边形的面积 2020-07-30 …
下列正确的是()1.三角形是平面图形2.四边形是平面图形3.4边相等的四边形是平面图形4,矩形一定 2020-08-02 …
(2014•禹城市二模)如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB 2020-08-03 …
立体几何课本上的问题由北京师范大学出版的高中数学必修26至27面的问题.在空间中,下列命题正确的个数 2020-12-02 …