早教吧作业答案频道 -->其他-->
如图,四边形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠BCD.(1)求证:∠1+∠2=90°;(2)若∠ABD的平分线与CD的延长线交于F,且∠F=55°,求∠ABC;(3)若H是BC上一动点,F是BA延长线上一点,FH交B
题目详情
如图,四边形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠BCD.
(1)求证:∠1+∠2=90°;

(2)若∠ABD的平分线与CD的延长线交于F,且∠F=55°,求∠ABC;

(3)若H是BC上一动点,F是BA延长线上一点,FH交BD于M,FG平分∠BFH,交DE于N,交BC于G.当H在BC上运动时(不与B点重合),
的值是否变化?如果变化,说明理由;如果不变,试求出其值.

(1)求证:∠1+∠2=90°;

(2)若∠ABD的平分线与CD的延长线交于F,且∠F=55°,求∠ABC;

(3)若H是BC上一动点,F是BA延长线上一点,FH交BD于M,FG平分∠BFH,交DE于N,交BC于G.当H在BC上运动时(不与B点重合),
∠BAD+∠DMH |
∠DNG |

▼优质解答
答案和解析
(1)证明:AD∥BC,
∠ADC+∠BCD=180,
∵DE平分∠ADB,
∠BDC=∠BCD,
∴∠ADE=∠EDB,
∠BDC=∠BCD,
∵∠ADC+∠BCD=180°,
∴∠EDB+∠BDC=90°,
∠1+∠2=90°.
(2)∠FBD+∠BDE=90°-∠F=35°,
∵DE平分∠ADB,BF平分∠ABD,
∴∠ADB+∠ABD=2(∠FBD+∠BDE)=70°,
又∵四边形ABCD中,AD∥BC,
∴∠DBC=∠ADB,
∴∠ABC=∠ABD+∠DBC=∠ABD+∠ADB,
即∠ABC=70°;
(3)
的值不变.
证明:在△BMF中,
∠BMF=∠DMH=180°-∠ABD-∠BFH,
又∵∠BAD=180°-(∠ABD+∠ADB),
∠DMH+∠BAD=(180°-∠ABD-∠BFH)+(180°-∠ABD-∠ADB),
=360-∠BFH-2∠ABD-∠ADB,
∠DNG=∠FNE=180°-
∠BFH-∠AED,
=180°-
∠BFH-∠ABD-
∠ADB,
=
(∠DMH+∠BAD),
∴
=2.
∠ADC+∠BCD=180,
∵DE平分∠ADB,
∠BDC=∠BCD,
∴∠ADE=∠EDB,
∠BDC=∠BCD,
∵∠ADC+∠BCD=180°,
∴∠EDB+∠BDC=90°,
∠1+∠2=90°.
(2)∠FBD+∠BDE=90°-∠F=35°,
∵DE平分∠ADB,BF平分∠ABD,
∴∠ADB+∠ABD=2(∠FBD+∠BDE)=70°,
又∵四边形ABCD中,AD∥BC,
∴∠DBC=∠ADB,
∴∠ABC=∠ABD+∠DBC=∠ABD+∠ADB,
即∠ABC=70°;
(3)
∠BAD+∠DMH |
∠DNG |
证明:在△BMF中,
∠BMF=∠DMH=180°-∠ABD-∠BFH,
又∵∠BAD=180°-(∠ABD+∠ADB),
∠DMH+∠BAD=(180°-∠ABD-∠BFH)+(180°-∠ABD-∠ADB),
=360-∠BFH-2∠ABD-∠ADB,
∠DNG=∠FNE=180°-
1 |
2 |
=180°-
1 |
2 |
1 |
2 |
=
1 |
2 |
∴
∠BAD+∠DMH |
∠DNG |
看了 如图,四边形ABCD中,AD...的网友还看了以下:
如图,在梯形ABCD中,AB‖DC,AC交BD于点F,延长AD,BC交于点E,且DE=2,AD=3 2020-05-16 …
如图,梯形ABCD中,AB//DC,AC交BD于点F,延长AD,BC交点E,且DE=2,AD=3求 2020-05-16 …
求一题数学题 题见补充如图,在矩形ABCD中对角线AC、BD相交于点F,延长BC到点E,使得四边形 2020-05-16 …
平行四边形ABCD中,∠BAD、∠ABC的平分线交于点F,延长BF交AD于点E(1)猜想AF与BE 2020-05-16 …
圆和直线的关系,是以BC为直径的圆O上的一点,AD垂直BC与点D,过B作圆O的切线,与CA的延长线 2020-05-20 …
在三角形BCD中BE平分∠DBC交CD于点F延长BC至GCE平分∠DCG且ECDB的延长线交于A点 2020-07-17 …
抛物线y=-(√3/3)x^2-(2√3/3)x+√3的图像与x轴交于A,B两点,与y轴交于c点, 2020-07-31 …
,0),圆M经过原点O及点A已知在平面直角坐标系中,线段OC的长是方程x^2-2根号3x+3=0的 2020-07-31 …
弦AD和CE相交于圆O内一点F,延长EC与过点A的切线相交于点B,已知AB=BF=FD,BC=1,C 2020-11-03 …
什么是数学知识的生长点和延伸点 2020-12-10 …