早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,四边形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠BCD.(1)求证:∠1+∠2=90°;(2)若∠ABD的平分线与CD的延长线交于F,且∠F=55°,求∠ABC;(3)若H是BC上一动点,F是BA延长线上一点,FH交B

题目详情
如图,四边形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠BCD.
(1)求证:∠1+∠2=90°;

(2)若∠ABD的平分线与CD的延长线交于F,且∠F=55°,求∠ABC;

(3)若H是BC上一动点,F是BA延长线上一点,FH交BD于M,FG平分∠BFH,交DE于N,交BC于G.当H在BC上运动时(不与B点重合),
∠BAD+∠DMH
∠DNG
的值是否变化?如果变化,说明理由;如果不变,试求出其值.
▼优质解答
答案和解析
(1)证明:AD∥BC,
∠ADC+∠BCD=180,
∵DE平分∠ADB,
∠BDC=∠BCD,
∴∠ADE=∠EDB,
∠BDC=∠BCD,
∵∠ADC+∠BCD=180°,
∴∠EDB+∠BDC=90°,
∠1+∠2=90°.

(2)∠FBD+∠BDE=90°-∠F=35°,
∵DE平分∠ADB,BF平分∠ABD,
∴∠ADB+∠ABD=2(∠FBD+∠BDE)=70°,
又∵四边形ABCD中,AD∥BC,
∴∠DBC=∠ADB,
∴∠ABC=∠ABD+∠DBC=∠ABD+∠ADB,
即∠ABC=70°;

(3)
∠BAD+∠DMH
∠DNG
的值不变.
证明:在△BMF中,
∠BMF=∠DMH=180°-∠ABD-∠BFH,
又∵∠BAD=180°-(∠ABD+∠ADB),
∠DMH+∠BAD=(180°-∠ABD-∠BFH)+(180°-∠ABD-∠ADB),
=360-∠BFH-2∠ABD-∠ADB,
∠DNG=∠FNE=180°-
1
2
∠BFH-∠AED,
=180°-
1
2
∠BFH-∠ABD-
1
2
∠ADB,
=
1
2
(∠DMH+∠BAD),
∠BAD+∠DMH
∠DNG
=2.