早教吧 育儿知识 作业答案 考试题库 百科 知识分享

当基圆半径趋于无穷大时.渐开线形状是什么

题目详情
当基圆半径趋于无穷大时.渐开线形状是什么
▼优质解答
答案和解析
渐开线
中文名称:渐开线
英文名称:involute
定义:在平面上,一条动直线(发生线)沿着一个固定的圆(基圆)作纯滚动时,此动直线上一点的轨迹.
将一个圆轴固定在一个平面上,轴上缠线,拉紧一个线头,让该线绕圆轴运动且始终与圆轴相切,那么线上一个定点在该平面上的轨迹就是渐开线.
直线在圆上纯滚动时,直线上一点K的轨迹称为该圆的渐开线,该圆称为渐开线的基圆,直线称为渐开线的发生线.渐开线的形状仅取决于基圆的大小,基圆越小,渐开线越弯曲;基圆越大,渐开线越平直;基圆为无穷大时,渐开线为斜直线.
渐开线方程为:
x=r×cos(θ+α)+(θ+α)×r×sin(θ+α)
y=r×sin(θ+α)-(θ+α)×r×cos(θ+α)
z=0
式中,r为基圆半径;θ为展角,其单位为弧度
展角θ和压力角α之间的关系称为渐开线函数
θ=inv(α)=tan(α)-α
式中,inv为渐开线involute的缩写
看了 当基圆半径趋于无穷大时.渐开...的网友还看了以下: