早教吧作业答案频道 -->其他-->
(2013•齐齐哈尔)已知二次函数y=ax2+bx+c(a≠0)的图象经过点(x1,0)、(2,0),且-2<x1<-1,与y轴正半轴的交点在(0,2)的下方,则下列结论:①abc<0;②b2>4ac;③2a+b+1<0;④2a+c
题目详情
(2013•齐齐哈尔)已知二次函数y=ax2+bx+c(a≠0)的图象经过点(x1,0)、(2,0),且-2<x1<-1,与y轴正半轴的交点在(0,2)的下方,则下列结论:①abc<0;②b2>4ac;③2a+b+1<0;④2a+c>0.则其中正确结论的序号是( )
A.①②
B.②③
C.①②④
D.①②③④
A.①②
B.②③
C.①②④
D.①②③④
▼优质解答
答案和解析
如图,
∵二次函数y=ax2+bx+c(a≠0)的图象经过点(x1,0)、(2,0),且-2<x1<-1,与y轴正半轴相交,
∴a<0,c>0,对称轴在y轴右侧,即x=-
>0,
∴b>0,
∴abc<0,所以①正确;
∵抛物线与x轴有两个交点,
∴b2-4ac>0,即b2>4ac,所以②正确;
当x=2时,y=0,即4a+2b+c=0,
∴2a+b+
=0,
∵0<c<2,
∴2a+b+1>0,所以③错误;
∵二次函数y=ax2+bx+c(a≠0)的图象经过点(x1,0)、(2,0),
∴方程ax2+bx+c=0(a≠0)的两根为x1,2,
∴2x1=
,即x1=
,
而-2<x1<-1,
∴-2<
<-1,
∵a<0,
∴-4a>c>-2a,
∴2a+c>0,所以④正确.
故选C.

∵二次函数y=ax2+bx+c(a≠0)的图象经过点(x1,0)、(2,0),且-2<x1<-1,与y轴正半轴相交,
∴a<0,c>0,对称轴在y轴右侧,即x=-
b |
2a |
∴b>0,
∴abc<0,所以①正确;
∵抛物线与x轴有两个交点,
∴b2-4ac>0,即b2>4ac,所以②正确;
当x=2时,y=0,即4a+2b+c=0,
∴2a+b+
c |
2 |
∵0<c<2,
∴2a+b+1>0,所以③错误;
∵二次函数y=ax2+bx+c(a≠0)的图象经过点(x1,0)、(2,0),
∴方程ax2+bx+c=0(a≠0)的两根为x1,2,
∴2x1=
c |
a |
c |
2a |
而-2<x1<-1,
∴-2<
c |
2a |
∵a<0,
∴-4a>c>-2a,
∴2a+c>0,所以④正确.
故选C.
看了 (2013•齐齐哈尔)已知二...的网友还看了以下:
S=(1+1/1*2+(2+1/2*3)+(3+1/3*4)+...+(20+1/20*21)S= 2020-04-27 …
上面写不下,我写在下面填符号1.(1)1/2()0.4()3/10()0.1=1(2)1/2()0 2020-05-13 …
数列{an}各项是1或3,且在第k个1和第k+1个1之间有2k-1个3,即1,3,1,3,3,3, 2020-05-16 …
谁能告诉我这个算式的简化公式(1+x)(1+x^2)(1+x^3)(1+x^4)(1+x^5)(1 2020-05-17 …
1+2+3+n=2分之1n(n+1),n是正整数,研究1*2+2*3+你(n+1),观察1*2=3 2020-05-20 …
天才进1,1,2,1,2,1,2,3,3,1,3,2,1,2,3,3,1,3,2,1,3,2,3, 2020-05-21 …
49.7-[-23/3/4+(18.7-25.25)]12+1又3/4-8又5/12-6.75-( 2020-06-04 …
已知1^3=1=1/4*1^2*2;1^3+2^3=9=1/4*2^2*3^2;1^3+2^3+3 2020-07-19 …
虚数化简1/4*(-4+4*i*3^(1/2))^(1/3)+1/(-4+4*i*3^(1/2)) 2020-07-30 …
观察下列各式:1^3+2^3=1+8=9,而(1+2)^2=9……观察下列各式:1^3+2^3=1+ 2021-01-01 …