早教吧作业答案频道 -->数学-->
关于平面直角坐标系在平面直角坐标系中,A(x1,y1)B(x2,y2)C(x3,y3)求△ABC的面积注意绝对值
题目详情
关于平面直角坐标系
在平面直角坐标系中,A(x1,y1) B(x2,y2) C(x3,y3)
求△ABC的面积
注意绝对值
在平面直角坐标系中,A(x1,y1) B(x2,y2) C(x3,y3)
求△ABC的面积
注意绝对值
▼优质解答
答案和解析
底边=BC=√[(x2-x3)^2+(y2-y3)^2]
BC所在直线是(y-y3)/(y2-y3)=(x-x3)/(x2-x3)
x/(x2-x3)-y/(y2-y3)+y3/(y2-y3)-x3/(x2-x3)=0
高=A到BC距离=|x1/(x2-x3)-y1/(y2-y3)+y3/(y2-y3)-x3/(x2-x3)|/√[1/(x2-x3)^2+1/(y2-y3)^2]
=√[(x2-x3)^2*(y2-y3)^2]|(x1-x3)/(x2-x3)+(y3-y1)/(y2-y3)|/√[(x2-x3)^2+(y2-y3)^2]
所以 S=√[(x2-x3)^2+(y2-y3)^2]*{√[(x2-x3)^2*(y2-y3)^2]|(x1-x3)/(x2-x3)+(y3-y1)/(y2-y3)|/√[(x2-x3)^2+(y2-y3)^2]}÷2
=|(x2-x3)*(y2-y3)|*|(x1-x3)/(x2-x3)+(y3-y1)/(y2-y3)|/2
=|(x1-x3)(y2-y3)+(y3-y1)(x2-x3)|/2
BC所在直线是(y-y3)/(y2-y3)=(x-x3)/(x2-x3)
x/(x2-x3)-y/(y2-y3)+y3/(y2-y3)-x3/(x2-x3)=0
高=A到BC距离=|x1/(x2-x3)-y1/(y2-y3)+y3/(y2-y3)-x3/(x2-x3)|/√[1/(x2-x3)^2+1/(y2-y3)^2]
=√[(x2-x3)^2*(y2-y3)^2]|(x1-x3)/(x2-x3)+(y3-y1)/(y2-y3)|/√[(x2-x3)^2+(y2-y3)^2]
所以 S=√[(x2-x3)^2+(y2-y3)^2]*{√[(x2-x3)^2*(y2-y3)^2]|(x1-x3)/(x2-x3)+(y3-y1)/(y2-y3)|/√[(x2-x3)^2+(y2-y3)^2]}÷2
=|(x2-x3)*(y2-y3)|*|(x1-x3)/(x2-x3)+(y3-y1)/(y2-y3)|/2
=|(x1-x3)(y2-y3)+(y3-y1)(x2-x3)|/2
看了 关于平面直角坐标系在平面直角...的网友还看了以下:
关于平面向量的数量积具体题例已知a,b都是非零向量,且a+3b与7a-5b垂直,a-4b与7a-2 2020-05-14 …
中等数学练习题4.已知绝对值a=4,绝对值b=5,=3/π,求a.b,(3a+2b).b,绝对值a 2020-05-14 …
已知直线(a-2)y-(3a-1)x+1=0,(1)求证无论a为何值,直线总经过第一象限(2)为使 2020-05-14 …
关于高中直线函数问题拜托各位了3Q直线x+a^2y+1=0与直线(a^2+1)x-by+3=0互相 2020-05-16 …
已知直线x+a^2y+1=0与直线(a^2+1)x-by+3=0 (1)L1‖l2,求B的取值 2 2020-05-16 …
绝对值a=1,绝对值b=2,若a-b与a垂直,当k为何值时,(ka-b)垂直(a+2b) 2020-06-14 …
已知点C在直线a外,点A在直线a上,且AC=2厘米.(1)设d是点C到直线a的距离,求d的取值范围 2020-06-15 …
A={(x,y)/y=a/x/},B={(x,y)/y=x+a},若A与B的交集是二元素集,求a的 2020-07-30 …
举反例说明下列命题是假命题:(1)一个钝角与一个锐角的和等于一个平角(2)两直线被第三条直线所截, 2020-07-30 …
求通达信公式:任意一个价位乘以固定数值的公式!假如有3个任意价位A.B.C有固定数值a.b.c.d. 2020-12-23 …