早教吧作业答案频道 -->数学-->
已知F是双曲线x2a2-y2b2=1(a>0,b>0)的左焦点,E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A、B两点,点E在以AB为直径的圆内,则该双曲线的离心率e的取值范围为()
题目详情
已知F是双曲线
-
=1(a>0,b>0)的左焦点,E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A、B两点,点E在以AB为直径的圆内,则该双曲线的离心率e的取值范围为( )
A. (1,+∞)
B. (1,2)
C. (1,1+
)
D. (2,+∞)
x2 |
a2 |
y2 |
b2 |
A. (1,+∞)
B. (1,2)
C. (1,1+
2 |
D. (2,+∞)
▼优质解答
答案和解析
由题意,直线AB方程为:x=-c,其中c=
因此,设A(-c,y0),B(-c,-y0),
∴
-
=1,解之y0=
,得|AF|=
,
∵双曲线的右顶点在以AB为直径的圆内部
∴|EF|<|AF|,即a+c<
,
将b2=c2-a2,并化简整理,得2a2+ac-c2<0
两边都除以a2,整理得e2-e-2>0,解之得e>2(舍负)
故选:D.
a2+b2 |
因此,设A(-c,y0),B(-c,-y0),
∴
c2 |
a2 |
y02 |
b2 |
b2 |
a |
b2 |
a |
∵双曲线的右顶点在以AB为直径的圆内部
∴|EF|<|AF|,即a+c<
b2 |
a |
将b2=c2-a2,并化简整理,得2a2+ac-c2<0
两边都除以a2,整理得e2-e-2>0,解之得e>2(舍负)
故选:D.
看了 已知F是双曲线x2a2-y2...的网友还看了以下:
已知双曲线x2a2−y2b2=1(a>0,b>0)的右焦点为F,若过点F且倾斜角为60∘的直线与双 2020-04-11 …
双曲线与直线相交的问题设双曲线C:x^2/9-y^2/7=1的右焦点为F,直线l过点F且斜率为k, 2020-06-15 …
已知抛物线y2=4x的焦点为F,其准线与x轴交于点M,过M作斜率为k的直线与抛物线交于A、B两点, 2020-07-21 …
已知函数f(x)=(a+lnx)除以x(a属于R)若a=4求曲线F(X)在点(e,f(e)处的切线 2020-07-27 …
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的右焦点为F,其右准线与x轴的焦点为A,再 2020-07-31 …
椭圆C:x2/a2+y2/b2=1(a>b>0)的左焦点为F(-1,0),离心率为√2/2..设过 2020-08-01 …
一直双曲线方程为a方分之x方-b方分之y方=1的右焦点为F若过点F且倾斜角60度的直线与双曲线的右支 2020-12-31 …
设双曲线C:的右焦点为F,直线l过点F且斜率为k,若直线l与双曲线C的左右两支都相交,则直线l的斜率 2020-12-31 …
已知椭圆C:的一个焦点是F(1,0),且离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)设经过点F的直线交椭圆 2021-01-13 …
抛物线X^=8Y的焦点为F,准线为L,则过点F和M(8,8)且与准线L相切的圆的个数,怎么求直线Y= 2021-02-08 …