早教吧作业答案频道 -->数学-->
如图,边长为2的正方形ADEF与梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,DC=BC=12AB=1,点M在线段EC上.(Ⅰ)证明:平面BDM⊥平面ADEF;(Ⅱ)判断点M的位置,使得三棱锥B-CDM的体积为218
题目详情
如图,边长为
的正方形ADEF与梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,DC=BC=
AB=1,点M在线段EC上.

(Ⅰ)证明:平面BDM⊥平面ADEF;
(Ⅱ)判断点M的位置,使得三棱锥B-CDM的体积为
.
2 |
1 |
2 |

(Ⅰ)证明:平面BDM⊥平面ADEF;
(Ⅱ)判断点M的位置,使得三棱锥B-CDM的体积为
| ||
18 |
▼优质解答
答案和解析
(Ⅰ)证明:∵DC=BC=1,DC⊥BC,
∴BD=
,
∵AD=
,AB=2,
∴AD2+BD2=AB2,
∴∠ADB=90°,
∴AD⊥BD,
∵平面ADEF⊥平面ABCD,ED⊥AD,平面ADEF∩平面ABCD=AD,
∴ED⊥平面ABCD,
∴BD⊥ED,
∵AD∩DE=D,
∴BD⊥平面ADEF,
∵BD⊂平面BDM,
∴平面BDM⊥平面ADEF;
(Ⅱ) 如图,在平面DMC内,过M作MN⊥DC,垂足为N,则MN∥ED,
∵ED⊥平面ABCD,
∴MN⊥平面ABCD,
∵VB-CDM=VM-CDB=
MN•S△BDC=
,
∴
×
×1×1×MN=
,
∴MN=
,
∴
=
=
=
,
∴CM=
CE,
∴点M在线段CE的三等分点且靠近C处.

∴BD=
2 |
∵AD=
2 |
∴AD2+BD2=AB2,
∴∠ADB=90°,
∴AD⊥BD,
∵平面ADEF⊥平面ABCD,ED⊥AD,平面ADEF∩平面ABCD=AD,
∴ED⊥平面ABCD,
∴BD⊥ED,
∵AD∩DE=D,
∴BD⊥平面ADEF,
∵BD⊂平面BDM,
∴平面BDM⊥平面ADEF;
(Ⅱ) 如图,在平面DMC内,过M作MN⊥DC,垂足为N,则MN∥ED,
∵ED⊥平面ABCD,
∴MN⊥平面ABCD,
∵VB-CDM=VM-CDB=
1 |
3 |
| ||
18 |
∴
1 |
3 |
1 |
2 |
| ||
18 |
∴MN=
| ||
3 |
∴
MN |
ED |
CM |
CE |
| ||||
|
1 |
3 |
∴CM=
1 |
3 |
∴点M在线段CE的三等分点且靠近C处.
看了 如图,边长为2的正方形ADE...的网友还看了以下:
在平行四边形ABCD中,点E,F分别是线段AD,BC上的两动点,点E从点A向D运动在平行四边形AB 2020-05-13 …
已知f(x)是定义在[-e,e]上的奇函数,当x€(0.e](€是属于符号)时,f(x)=e^x+ 2020-05-13 …
某刑事案件的六个嫌疑分子A,B,C,D,E,F交待了以下材料:AB与F作案;BD与A作案;CB与E 2020-05-16 …
设栈S的初始状态为空,元素a,b,c,d,e,f依次入栈S,出栈的序列为b,d,f,e,c,a…… 2020-05-17 …
1.若O(20°N,90°E)为太阳直射点,弧线EP、FP分别为晨线和昏线的一段,则 ( ) A. 2020-05-17 …
反应E+F=G在温度t1下进行,反应M+N=K在温度t2下进行,已知t1>t2,且E和F的浓度均大 2020-05-20 …
若a/b=c/d=e/f,则下列各式中正确的是().A.e/f=ac/bdB.e/f=(a+c+e 2020-06-06 …
若f(u)可导,且y=f(e^x),则有(),为什么A.dy=f'(e^x)dxB.dy=f'(e 2020-06-12 …
问一道数学题,科大上p175我这样做的:(1)将等式两边求导:1=f`*e^f+f*e^f*f`= 2020-07-18 …
f(x)=e^(3x)+∫(上x下0)tf(x-t)dt,求f(x)要过程,答案是f=(1/8)e^ 2020-10-31 …