早教吧作业答案频道 -->英语-->
Somebodyisknockingatthedoor,?A.isitB.isheC.aren'ttheyD.don'tthey但我觉得不是要isn'the或aren'tthey吗
题目详情
Somebody is knocking at the door,_____?A.is it B.is he C.aren't they D.don't they
但我觉得不是要isn't he 或aren't they吗
但我觉得不是要isn't he 或aren't they吗
▼优质解答
答案和解析
somebody 可以用he she 或者they 来回答 肯定不是A
somebody 属于正面不定代词 不像nobody 后面的部分要用aren't they 或者 isn't he
所以正确答案是C 不知道这个答案A 是怎么出来的
somebody 属于正面不定代词 不像nobody 后面的部分要用aren't they 或者 isn't he
所以正确答案是C 不知道这个答案A 是怎么出来的
看了 Somebodyisknoc...的网友还看了以下:
已知数列{an}满足a1=1,an=a1+1/2a2+1/3a3+...+1/n-1an-1(n> 2020-05-16 …
2^2-1^2=2*1+13^2-2^2=2*2+14^2-3^2=2*3+1……(n+1)^2- 2020-05-19 …
a(n+1)=[(n+1)/n]an+(n+1)/2^n两边同除(n+1)得:a(n+1)/(n+ 2020-06-02 …
在(n+1)=n^2+2n+1中,当n=1,2,3……这些正整数时,可以得到n个等式将这些等式在( 2020-06-10 …
若整数a能被整数b整除,则一定存在整数n,使得ab=n,即a=bn.例如若整数a能被整数3整除,则 2020-06-16 …
求渐化式~急已知:p(n)=1/2p(n-1)+1/2p(n-2)求p(n)用n表示由已知可得:p 2020-07-08 …
已知数列{an}得通项公式an=1/n+1+1/n+2+1/n+3+...+1/2n(n∈n*). 2020-07-26 …
求助:矩阵和的n次方解法比如(3E+B)^n=(3E)^n+n*(3E)^(n-1)*B(E+B) 2020-07-29 …
求一个正整数n,它的所有约数之和等于3n+3或者n得所有约数之和等于k(n+1)(k>2)只要找出 2020-07-31 …
求教一个数学合情推理的问题通过计算可得下列等式2^2-1^2=2*1+13^2-2^2=2*2+14 2020-11-21 …