早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图所示,AA1∥BA2,求∠A1-∠B1+∠A2.

题目详情
如图所示,AA1∥BA2,求∠A1-∠B1+∠A2
▼优质解答
答案和解析
证明:分析本题对∠A1,∠A2,∠B1的大小并没有给出特定的数值,因此,答案显然与所给的三个角的大小无关.也就是说,不管∠A1,∠A2,∠B1的大小如何,答案应是确定的.我们从图形直观,有理由猜想答案大概是零,即
∠A1+∠A2=∠B1.①
猜想,常常受到直观的启发,但猜想必须经过严格的证明.①式给我们一种启发,能不能将∠B1一分为二使其每一部分分别等于∠A1与∠A2.这就引发我们过B1点引AA1(从而也是BA2)的平行线,它将∠B1一分为二.
过B1引B1E∥AA1,它将∠A1B1A2分成两个角:∠1,∠2(如图所示).
因为AA1∥BA2,所以B1E∥BA2.从而
∠1=∠A1,∠2=∠A2(内错角相等),
所以
∠B1=∠1+∠2=∠A1+∠A2
即∠A1-∠B1+∠A2=0.
说明(1)从证题的过程可以发现,问题的实质在于AA1∥BA2,它与连接A1,A2两点之间的折线段的数目无关,如图所示.连接A1,A2之间的折线段增加到4条:A1B1,B1A2,A2B2,B2A3,仍然有∠A1+∠A2+∠A3=∠B1+∠B2
(即哪些向右凸出的角的和=向左凸的角的和)即
∠A1-∠B1+∠A2-∠B2+∠A3=0.
进一步可以推广为
∠A1-∠B1+∠A2-∠B2+-∠Bn-1+∠An=0.
这时,连接A1,An之间的折线段共有n段A1B1,B1A2,Bn-1An(当然,仍要保持AA1∥BAn).
推广是一种发展自己思考能力的方法,有些简单的问题,如果抓住了问题的本质,那么,在本质不变的情况下,可以将问题推广到复杂的情况.
(2)这个问题也可以将条件与结论对换一下,变成一个新问题.
问题1如图所示.∠A1+∠A2=∠B1,问AA1与BA2是否平行?

问题2如图所示.若∠A1+∠A2+…+∠An=∠B1+∠B2+…+∠Bn-1,问AA1与BAn是否平行?
这两个问题请同学加以思考.
看了 如图所示,AA1∥BA2,求...的网友还看了以下: