早教吧作业答案频道 -->数学-->
设多项式f(x)=x4+x³-7x²+ax+2b与g(x)=x³-3x²+ax+b有公因式x+1,则f(x)与g(x)的最大公因式是?(x4是x的4次方,
题目详情
设多项式f(x)=x4+x³-7x²+ax+2b与g(x)=x³-3x²+ax+b有公因式x+1,则f(x)与g(x)的最大公因式是?(x4是x的4次方,
▼优质解答
答案和解析
f(x)=x^4+x^3-7x^2+ax+2b
=x^4+x^3-7x^2-7x+7x+ax+2b
=x^3(x+1)-7x(x+1)+(7+a)x+2b
=(x^3-7x)(x+1)+(7+a)x+2b
∴要使得f(x)能被x+1整除,7+a得等于2b,即7+a=2b.(这步比较关键,可以用反证法或者系数待定法证明!)
同理,根据g(x)能被x+1整除,得出4+a=b.
联合两式可得,a=-1,b=3
∴f(x)=x^4+x^3-7x^2-1x+6
=(x^3-7x)(x+1)+6x+6
=(x^3-7x+6)(x+1)
=(x^3-x^2+x^2-x+x-7x+6)(x+1)
=[x^2(x-1)+x(x-1)-6(x-1)](x+1)
=(x^2+x-6)(x-1)(x+1)
=(x+3)(x-2)(x-1)(x+1)
g(x)=x^3-3x^2-x+3
=(x^2-4x+3)(x+1)
=(x-3)(x-1)(x+1)
∴很明显得到,f(x)与g(x)的最大公因式为(x-1)(x+1),即x²-1.
=x^4+x^3-7x^2-7x+7x+ax+2b
=x^3(x+1)-7x(x+1)+(7+a)x+2b
=(x^3-7x)(x+1)+(7+a)x+2b
∴要使得f(x)能被x+1整除,7+a得等于2b,即7+a=2b.(这步比较关键,可以用反证法或者系数待定法证明!)
同理,根据g(x)能被x+1整除,得出4+a=b.
联合两式可得,a=-1,b=3
∴f(x)=x^4+x^3-7x^2-1x+6
=(x^3-7x)(x+1)+6x+6
=(x^3-7x+6)(x+1)
=(x^3-x^2+x^2-x+x-7x+6)(x+1)
=[x^2(x-1)+x(x-1)-6(x-1)](x+1)
=(x^2+x-6)(x-1)(x+1)
=(x+3)(x-2)(x-1)(x+1)
g(x)=x^3-3x^2-x+3
=(x^2-4x+3)(x+1)
=(x-3)(x-1)(x+1)
∴很明显得到,f(x)与g(x)的最大公因式为(x-1)(x+1),即x²-1.
看了 设多项式f(x)=x4+x³...的网友还看了以下:
设双曲线的中心o关于其有焦点的对称点为G以G为圆心作一个与双曲线渐近线相切的圆则双曲线的右准线与圆 2020-04-08 …
男甲与女乙生一儿子E,十年后乙死亡,后又与女丙生一儿子F,男子E有一儿子M,男子F有一儿子N,男子 2020-04-26 …
已知某产品制造工业的基本反应为:A(g)+B(g)(剪头符号,一个向右一个向左)2C(g),在某温 2020-05-13 …
已知函数f(x)=lnx,g(x)=m(x+n)x+1(m>0).(Ⅰ)若函数y=f(x)与y=g 2020-06-08 …
在同一对应法则f下,f(x)中的x与f[g(x)]中的g(x)两者的范围应该是一致的?在同一对应法 2020-06-12 …
对于函数y=f(x)与y=g(x),在它们的公共定义域内,若f(x)-g(x)随着自变量x的增大而 2020-07-08 …
已知集合A={5,6,7,8},设f,g都是由A到A的映射,其对应法则分别如表1和表2所示:则与f 2020-07-13 …
一道高中数学函数题设f(x)=x^3+ax^2-a^2x+1,g(x)=aX^2-2x+1,其中实 2020-07-30 …
圆锥曲线G的一个焦点是F,与之对应的准线是,过F作直线与G交于A、B两点,以AB为直径作圆M,圆M 2020-07-31 …
对一般的二维数组G而言,当()时,其按行存储的G[I,J]的地址与按列存储的G[J,I]的地址相同 2020-07-31 …