早教吧作业答案频道 -->数学-->
在△ABC中,∠ABC=90°,∠A=30°,BC=3,D是边AC上的一个动点,DE⊥AB,垂足为E,点F在CD上,且DE=DF,作FP⊥EF,交线段AB于点P,交线段CB的延长线于点G.(1)求证:AF=FP;(2)设AD=X,GP=Y,求Y关于X的函数解析式,并写出它的定
题目详情
在△ABC中,∠ABC=90°,∠A=30°,BC=3,D是边AC上的一个动点,DE⊥AB,垂足为E,点F在CD上,且DE=DF,作FP⊥EF,
交线段AB于点P,交线段CB的延长线于点G.(1)求证:AF=FP;(2)设AD=X,GP=Y,求Y关于X的函数解析式,并写出它的定义域;(3)若点P到AC的距离等于线段BP的长,求线段AD的长.
交线段AB于点P,交线段CB的延长线于点G.(1)求证:AF=FP;(2)设AD=X,GP=Y,求Y关于X的函数解析式,并写出它的定义域;(3)若点P到AC的距离等于线段BP的长,求线段AD的长.
▼优质解答
答案和解析
1)因为DE⊥AB
所以∠AED=90
因为∠A=30
所以∠ADE=90-30=60,
所以∠EDF=180-60=120
因为DE=DF
所以∠DFE=(180-∠EDF)/2=30,
因为PF⊥EF
所以∠PFE=90,
所以∠PFA=∠PFE+∠AFE=90+30=120,
所以在△AFP中,∠APF=180-∠A-∠PFA=30
所以∠APF=∠A=30
所以AF=PF
2)设AD=x,
因为在直角三角形ADE中,∠A=30,
所以DE=AD/2=x/2,
所以DF=DE=x/2
所以PF=AF=x+x/2=3x/2,FC=AC-AF=6-3x/2,
因为∠GPB=∠APF=30,
所以∠G=90-30=60=∠C
所以FG=FC=6-3x/2,
所以y=GP=GF-FP=(6-3x/2)-3x/2=6-x
0 3)因为点P到AC的距离等于线段BP的长
所以P在∠ACB的平分线上,
所以∠BCP=∠ACB/2=30
所以BP=3√3
所以在直角三角形BGP中,y=2BP=6√3
即y=6-x=6-x=3√3
解得x=6-3√3
即AD=6-3√3
所以∠AED=90
因为∠A=30
所以∠ADE=90-30=60,
所以∠EDF=180-60=120
因为DE=DF
所以∠DFE=(180-∠EDF)/2=30,
因为PF⊥EF
所以∠PFE=90,
所以∠PFA=∠PFE+∠AFE=90+30=120,
所以在△AFP中,∠APF=180-∠A-∠PFA=30
所以∠APF=∠A=30
所以AF=PF
2)设AD=x,
因为在直角三角形ADE中,∠A=30,
所以DE=AD/2=x/2,
所以DF=DE=x/2
所以PF=AF=x+x/2=3x/2,FC=AC-AF=6-3x/2,
因为∠GPB=∠APF=30,
所以∠G=90-30=60=∠C
所以FG=FC=6-3x/2,
所以y=GP=GF-FP=(6-3x/2)-3x/2=6-x
0
所以P在∠ACB的平分线上,
所以∠BCP=∠ACB/2=30
所以BP=3√3
所以在直角三角形BGP中,y=2BP=6√3
即y=6-x=6-x=3√3
解得x=6-3√3
即AD=6-3√3
看了 在△ABC中,∠ABC=90...的网友还看了以下:
c语言中 a>b?g=a:g=b 书上说是错误的 应改成 a>b?g=a:(g=b) 2020-05-16 …
高一化学!马上要!!1.某温度下,ag饱和硝酸钾溶液蒸干得bg硝酸钾,此温度下,硝酸钾的溶解度计算 2020-06-10 …
定义域为R的函数y=g(x),满足对任意a、b属于R,都有g(a+b)=g(a)乘g(b),且对任 2020-06-25 …
已知f(x),g(x)都是奇函数f(x)>0的x∈(a,b),g(x)>0的解集是x∈(a/2,b 2020-07-30 …
非空集合G关于运算○满足;1,对于任意a,b∈G,都有a○b∈G;2,存在e∈G,使对一切a∈G都 2020-08-01 …
非空集合G关于运算○满足;1,对于任意a,b∈G,都有a○b∈G;2,存在e∈G,使对尤其是那个e 2020-08-01 …
设G是一个非空集合,*是定义在G上的一个运算.如果同时满足下述四个条件:(ⅰ)对于∀a,b∈G,都 2020-08-01 …
非空集合G关于运算⊕满足:(1)对任意的a,b∈G,都有a⊕b∈G;(2)存在e∈G,都有a⊕e= 2020-08-01 …
非空集合G关于运算⊕满足:(1)对任意的a,b∈G,都有a⊕b∈G,(2)存在e∈G,都有a⊕e= 2020-08-01 …
非空集合G关于运算⊕满足:(1)对任意a、b∈G,都有a⊕b∈G;(2)存在c∈G,使得对一切a∈G 2020-11-10 …