早教吧作业答案频道 -->数学-->
已知∠AOB=90°,OC是∠AOB的平分线,按以下要求解答问题.(1)将三角板的直角顶点P在射线OC上移动,两直角边分别与OA,OB交于M,N,如图①,求证:PM=PN;(2)将三角板的直角顶点P在射线O
题目详情
已知∠AOB=90°,OC是∠AOB的平分线,按以下要求解答问题.
(1)将三角板的直角顶点P在射线OC上移动,两直角边分别与OA,OB交于M,N,如图①,求证:PM=PN;
(2)将三角板的直角顶点P在射线OC上移动,一条直角边与OB交于N,另一条直角边与射线OA的反向延长线交于点M,并猜想此时①中的结论PM=PN是否成立,并说明理由.

(1)将三角板的直角顶点P在射线OC上移动,两直角边分别与OA,OB交于M,N,如图①,求证:PM=PN;
(2)将三角板的直角顶点P在射线OC上移动,一条直角边与OB交于N,另一条直角边与射线OA的反向延长线交于点M,并猜想此时①中的结论PM=PN是否成立,并说明理由.

▼优质解答
答案和解析
(1)过P作PE⊥OA于E,PF⊥OB于F,
∵OC是∠AOB的平分线,
∴PE=PF,∠PEM=∠PFN=90°,
∵∠MPE+∠MPF=90°,∠NPF+∠MPF=90°,
∴∠MPE=∠NPF,
在△PME和△PNF中,
,
∴△PME≌△PNF(ASA),
∴PM=PN.
(2)过P作PE⊥OA于E,PF⊥OB于F,
∵OC是∠AOB的平分线,
∴PE=PF,∠PEM=∠PFN=90°,
∵∠MPE+∠MPF=90°,∠NPF+∠MPF=90°,
∴∠MPE=∠NPF,
在△PME和△PNF中,
,
∴△PME≌△PNF(ASA),
∴PM=PN.

∵OC是∠AOB的平分线,
∴PE=PF,∠PEM=∠PFN=90°,
∵∠MPE+∠MPF=90°,∠NPF+∠MPF=90°,
∴∠MPE=∠NPF,
在△PME和△PNF中,
|
∴△PME≌△PNF(ASA),
∴PM=PN.
(2)过P作PE⊥OA于E,PF⊥OB于F,
∵OC是∠AOB的平分线,
∴PE=PF,∠PEM=∠PFN=90°,
∵∠MPE+∠MPF=90°,∠NPF+∠MPF=90°,
∴∠MPE=∠NPF,
在△PME和△PNF中,
|
∴△PME≌△PNF(ASA),
∴PM=PN.
看了 已知∠AOB=90°,OC是...的网友还看了以下:
关于两平面夹角的问题两平面夹角的定义为:分别在两平面内做垂直与交线的直线,两直线之间的角即为两平面 2020-05-13 …
已知m、n位直线,a、b为平面;若m含于a,n垂直于b,a平行于b,则可得m平行于n.这句话是否正 2020-05-13 …
把重为G1和G2的两个铁块,分别挂在不等臂杠杆两端,此时杠杆平衡.问:将两个铁块全部浸没在水中,则 2020-05-17 …
两平行板间电场强度与板的电荷面密度关系的疑问.已知真空中两无限大平行板间电场强度E两平行板间电场强 2020-06-14 …
平面直角坐标系的问题,平面直角坐标系中两点A(a,b)B(a1,b1)的中点的坐标是(a+a1)/ 2020-06-14 …
求解一题噪声叠加问题、某拟建工程计划建设两个有噪声源的设备,源强分别为88dB(A)和90dB(A 2020-06-21 …
平行线a,b是一条灌溉渠道的两岸A,B是位于渠道两旁的两个村庄,今要在渠上架一座与安垂直的桥梁且使 2020-07-08 …
已知函数f(x)=Inx-ax^2+2bx(a>0)且f'(1)=0,试问函数f(x)图像上是否存 2020-07-22 …
关于两平面夹角的问题两平面的夹角就是二面角吗?取值范围是多少?有人说两平面的夹角是两个角,二面角是 2020-07-31 …
面面平行推论;一个平面内两条相交直线分别平行于另一平面内两条相交直线,两平面平行如果一个平面内的两条 2020-12-23 …